Archive for the ‘Aviation’ Category

Selling CCS at a climate conference

As COP 19 rolls on in Warsaw, both delegates and observers that I have talked to are seeing little agreement, despite the sometimes upbeat assessment coming from the UNFCCC. It may well be late on Friday or even Saturday before something appears from this COP.

Meanwhile the side event and external (to the formal COP) conference programmes continue. It is through these processes that participants can meet and discuss various aspects related to climate change. This being a meeting about climate change, it might be expected that attendees would be interested in hearing about carbon capture and storage (CCS), but it turns out this is a hard sell here. The problem seems to start at the COP venue itself, where the meeting room banners feature various approaches to energy and environmental management. CCS doesn’t get a mention.

 COP Banners

All I could find were Energy Efficiency, Renewable Energy Sources, Air Protection and Water & Wastewater Management.

This theme continues in many presentations, speeches, dinner conversations and panel discussions. While CCS does of course feature when organizations such as GCCSI hold events, at more general climate solution events it struggles to hold its own. Rather the focus is solidly on energy efficiency and renewables. Neither of these are anything close to sufficient solutions to the climate problem as it stands today, yet you could sometimes come to the conclusion that this is what the COP is actually about.

Energy efficiency has transformed global industry since the first day of the industrial revolution. Everything we do is possible through a combination of technology innovation and energy efficiency, from power stations to vehicles to mobile phones. The result of this has been tremendous growth, but with it has come a continuous rise in greenhouse gas emissions, particularly CO2. We use more goods and services, buy more stuff and travel further than at any point in human history and there is no apparent let up in this trend as it continues to pervade the entire global economy. But now energy efficiency is being sold as a mechanism for reducing emissions, throwing into reverse a trend that has been with us for over 200 years and fundamentally challenging economic building blocks such as Jevons Paradox. A parade of people representing business organizations, environmental NGOs and multilateral institutions will wax lyrical about energy efficiency. In one presentation an airline industry spokesperson talked about the tremendous improvements in efficiency the industry was making, through engine design, light weighting, route optimization and arrival and departure planning. There is no doubt that this is happening, but it is also bringing cheaper air travel to millions of people and of course forcing up emissions for the industry as a whole. There is no sign of this trend reversing itself. Adding a carbon price to the energy mix is the way to change this trend and still make energy efficiency improvements. 

The renewable energy story is told in a similar way. While there is also no doubt that the application of renewable energy is bringing benefits to many countries, offering distributed energy, providing off-grid electricity and supplementing the global energy supply in a tangible way, the global average CO2 intensity of energy has remained stubbornly the same since the 1980s when it dropped on a relative scale (1990 = 100) from 107 in 1971 to 100 in 1987 (Source: IEA). It was still at 100 in 2011. This is not to say it will never change, but simply advocating for renewable energy is very unlikely to take us to net zero emissions before the end of this century. The fossil fuel base on which the economy rests is also growing as demand for energy grows. As recent IEA World Energy Outlooks have repeatedly shown, much of this new demand is being met with coal. The only way to manage emissions from coal is the application of CCS, yet this seemingly falls on deaf ears here in Warsaw.

When CCS does get a mention, it is increasingly phrased as CCUS, with the “U” standing for “use”. In her one upbeat mention of CCS that I have heard, UNFCCC Executive Secretary also referred to it as CCUS. In another forum, one participant even talked about “commoditizing” CO2 to find a range of new uses. The problem is that CO2 really can’t be used for much of anything, with one modest (compared to the scale of global emissions) but important exception. The largest use today is for enhanced oil recovery where the USA has a mature and growing industry. It was originally built on the back of natural CO2 extracted from the sub-surface, but the industry now pays enough for CO2 that it can provide support to carbon capture at power plants and other facilities (usually with some capital funding from the likes of DOE).  This has helped the US establish a CCS demonstration programme of sorts.

There are other minor industrial gas uses (soft drinks), some scope for vegetable greenhouses such as the Shell project in the Netherlands (which provides refinery CO2 to Rotterdam greenhouses for enhanced growing, rather than have them produce it by burnaing natural gas) and a technology that quickly absorbs CO2 in certain minerals to make a new material for building, but all of these are tiny. The problem is that CO2 is the result of combustion and energy release and therefore any chemistry that turns it into something useful again requires lots of energy – nature does this and uses sunlight. Even if such a step were possible, this wouldn’t change the CO2 balance in the atmosphere, just as any bio process doesn’t change the overall balance in the atmosphere. Only sequestration, either natural or anthropogenic, changes that balance.

In a year which saw extreme weather rise up the political agenda and the consequences of a changing climate starting to sink into our collective psyche, action to actually address the issue of rising levels of CO2 in the atmosphere remained limited.

With regards issue recognition and despite arguments about attribution, the Bloomberg Businessweek headline after Hurricane Sandy was a telling moment. But events such as this seem to have a short half life, so it remains to be seen how lasting this will be.

 The principal policy instrument to trigger action, a price on CO2 emissions, did gain political traction and coverage, but its impact remained mute. Several jurisdictions introduced carbon pricing and others continued developing approaches and/or starting up schemes already in the pipeline. Notably, despite industry resistance, Japan introduced a modest carbon tax (although there has been a change in government since then so watch this space) and Kazakhstan leapt ahead of the pack by introducing an emissions trading system for startup this week. The Chinese trial systems began to take shape and there is now serious discussion about national implementation in the 2016 5-year plan. As of January 1st the California ETS is up and running, as is the Quebec system. The Australian carbon price mechanism started in 2012 and importantly the Australian Government passed legislation to link their system with the EU ETS. But fierce opposition forced the EU to take a step back with regards its plans to cover international aviation under the EU ETS.

The EU did however take one major step forward during 2012, in its recognition that a carbon market created as a result of an ETS may need some government intervention from time to time to keep it on track and relevant. Although the issue is far from settled, there is at least a proposal on the table aimed at supporting the weak market in the EU. The move also establishes an important precedent for the future, not just in the EU but probably in the minds of policy makers globally.

With global carbon prices remaining low, the one critical technology for actually rescuing the emissions problem, carbon capture and storage (CCS), struggled badly. Shell did announce an important project in its oil sands in Alberta, but other than this little else happened. At the end of the year the EU managed to deliver a damaging blow to the technology by not coming up with a single project to support with its NER300 CCS funding mechanism, despite having nearly €2 billion in hand to spend. Instead, the money went to some twenty or so small renewable energy projects. It’s hard to overstate the importance of CCS, yet it seems increasingly distant in terms of commercialization and deployment.

From a climate perspective, the year concluded in Doha with two weeks of talks that did a lot to tidy up the UNFCCC process, but hardly pushed the agenda forward at all. If the “holy grail” of a global deal really is to be agreed by 2015, then something remarkable needs to happen during 2013.

Happy New Year!

Where to now for aviation?

  • Comments Off

Last week’s first commercial flight of the Boeing 787 Dreamliner potentially marks the beginning of a new era for the aviation industry. Its composite construction and 20% better fuel efficiency (than the 767) continues a long term trend of improvement by Boeing. But the numbers behind this essential global industry are daunting, albeit with impressive strides forward such as the 787.

Revenue Passenger Kilometres (RPK) have more than doubled since 1990 and the Boeing Current Market Outlook for the period 2011 to 2030 has RPK growth rates surging ahead in many parts of the world at well over 5% p.a. such that by 2030 RPK in the Asia Pacific area alone is nearly 4 trillion. Globally, 2030 traffic is forecast to be about triple that of today.

Total CO2 emissions (Source: IEA) have risen as well, but since 1990 the growth has been “only” 50%, compared with the more than doubling of activity. This points to the impressive jumps in fuel efficiency, with the Dreamliner delivering yet again.

The chart above gives an indication of the improvements achieved by plane type. I wasn’t able to locate actual efficiency figures, so the chart has been derived from the fuel capacity, passenger carrying capacity and range of various aircraft plotted against the year of release for the aircraft in question. Clearly the trend has been strongly down, starting with the Boeing 707 in the 1950s. But how much further can this impressive trend extend? Airlines are also pressing hard to increase efficiency of their legacy fleets by taking steps such as reducing weight, incentivizing passengers to do the same with their baggage, optimizing schedules and pushing air traffic control and airports to improve landing, takeoff and taxiing procedures.

But if air traffic is to triple in just 20 years, efficiency will have to jump by even more than it has to date to deliver any sort of sustainable service. Increasing Kerosene (Jet A1) demand will not only put pressure on crude oil demand, but will also pressure the yield of kerosene from the barrel. This will require refiners to become more inventive in the processing of crude oil and could well point to even higher energy demand by refineries to make more transport fuel from the barrels of crude available. It may also point to an even faster turnover of the fleet as airlines scramble to upgrade to the next generation of fuel efficient aircraft – planes such as the 787 Dreamliner, A380 and upcoming A350 series from Airbus.

Many airlines are now starting to experiment with biofuels and new production processes such as Fischer-Tropsch based Gas-to-Liquids with its high kerosene yields will add to the aviation fuel pool. But revolutionary step change airframes that might make up a future Boeing 800 or Airbus 400 series are unlikely to impact this 20 year picture, they just won’t be here in time or in sufficient numbers to make a difference (the Dreamliner was first mooted in the late 1990s). The2030 die is now largely cast with what we have and know about.

The challenge of an absolute reduction in CO2 emissions from aviation is also an unlikely prospect given the above figures. Yet by 2030 global emissions need to have peaked and be showing real falls. Although aviation may well continue to show impressive efficiency improvements and could have introduced biofuels into the mix by 2030, sheer demand will probably mean a rise in emissions. This then puts more pressure on other sectors to reduce, such as power generation and road transport.