Archive for the ‘Carbon price’ Category


Carbon pricing and COP21

As we get closer to COP21 there will be plenty of articles and opinion pieces put forward describing the process, speculating on the outcome and generally trying to help readers understand what exactly is going on. One such piece appeared in the Financial Times recently, written by Pilita Clark. It’s a good summary and has some thoughtful insights but requires some clarification around what the six oil and gas industry CEOs actually argued for in their letter to the UNFCCC.

Pilita Clark rightly points out that a Paris accord, if reached, will be based on many widely differing national contributions, rather than a single agreed policy such as a global carbon price. But the article further qualifies this conclusion with reference back to the letter that the CEOs of Shell, BP, ENI, BG, Statoil and Total wrote to the Executive Secretary of the UNFCCC and the French Presidency, with the following remark;

“. . . the European oil and gas companies that have called for a global carbon pricing framework ahead of the Paris meeting have done so safe in the knowledge this would never emerge from the talks.”

In fact the letter didn’t call for a global carbon price or pricing framework for the very same reason that Pilita Clark gave; this isn’t on the agenda and would never be agreed by the negotiators assembled in Paris.

Rather, the main agenda item for Paris is the negotiation of a framework within which the Intended Nationally Determined Contributions (INDC) will sit. This will probably include provisions for measurement, reporting, verification, peer review and financial assistance for implementation.   An important tool for nations to meet their mitigation goals will be through  carbon pricing mechanisms, which are referenced in a few Parties’ INDCs but not often enough.   The framework agreed in Paris could also include another important provision; the notion of cooperative implementation through the transfer of the obligation under the INDC to another party. This would allow emission reductions to be made at lowest cost globally, which in turn could assist the process of review and agreement on greater ambition.

The International Emissions Trading Association (IETA) have been advocating for such a provision for over a year, with a proposal that would require such transfers to be reconciled in terms of carbon units of some description. The transfer of units would lead to price discovery and therefore the emergence of a carbon market at international level. IETA proposed the following short text insertion within the expected Paris agreement:

Cooperation between Parties in realizing their Contributions

Parties may voluntarily cooperate in achieving their mitigation contributions.

  • A unified international transfer system is hereby established.
  • A Party though private and/or public entities may transfer portions of its nationally determined contribution to one or more other Parties through carbon units of its choice.
  • Transfers and receipts of units shall be recorded in equivalent carbon reduction terms.

IETA have also proposed alternative formulations of the same idea as various Parties (national governments) have put forward their own versions of the concept. Like almost every piece of language proposed so far, this has been incorporated to some extent in the 55 pages of text about to be negotiated, along with its multitude of bracketed options and alternative language possibilities. What survives remains to be seen?

In their letter, the CEOs alluded to this idea, when they called for the following;

Therefore, we call on governments, including at the UNFCCC negotiations in Paris and beyond – to: 

  • introduce carbon pricing systems where they do not yet exist at the national or regional levels
  • create an international framework that could eventually connect national systems. 

National carbon pricing systems make complete sense, such as the ETS in Europe and the proposed carbon tax in South Africa. The framework that could connect them would allow for the speedy and transparent transfer of a national obligation across a border through emissions trading, which is exactly what happens today between Norway and the EU, between countries within the EU and arguably even between the USA and Canada through the California – Quebec ETS linkage. But this needs to be a much more widespread activity in order to quickly leverage the full potential for emission reduction that exists at any point in time.

This isn’t an empty call for a global carbon price, but a reinforcement of the call that IETA has been making for some time and a plea to the UNFCCC, the French Presidency of the COP and the respective Parties to see such a measure included in the Paris agreement. It’s a simple practical step that is needed to catalyse the development of a global carbon market.

The Carbon Sequestration Leadership Forum (CSLF) held its 6th Ministerial Meeting in Riyadh, Saudi Arabia recently. The conference offered considerable opportunity for governments and companies to showcase their achievements in carbon capture and storage (CCS) and to highlight areas in which research and development was proceeding.

Given the location, Saudi Aramco was there in force and they also offered the opportunity for a number of participants to visit their headquarters in Dhahran and get an even deeper look at how the company was looking at the CO2 issue and the use of CCS. As there isn’t a carbon pricing system operating in Saudi Arabia, the company is heavily focussed on using CO2 for Enhanced Oil Recovery (EOR), but this is at least driving research and development on CO2 separation, purification and transport with a view to further lowering the cost and improving the efficiency of these key steps in the CCS value chain.

To this end, Saudi Aramco is doing some intriguing work on small scale carbon capture, which was demonstrated in both Riyadh and Dhahran by their display featuring a saloon car with on-board carbon capture. The vehicle captures about thirty percent of the carbon dioxide in the exhaust, using a solvent process. The CO2 is then recovered from the solvent, compressed and stored as a supercritical liquid in a small cylinder, all within the vehicle itself. The carbon dioxide can then be discharged when the car is filled with fuel as part of the normal service offered at a (future) gasoline station. The fuel supplier would then handle long term geological storage of the carbon dioxide or may have outlets where it can be profitably used (e.g. as a feedstock for manufacture of more fuel, but with the caveat that a considerable amount of energy will be required for such a step).

CCS Car (small)

The vehicle is a 2nd generation prototype, with the carbon capture equipment occupying about half the boot space. But this is a huge step forward compared to their first generation attempt where the equipment sat on a trailer pulled by the car. Further enhancements are planned. The current system is an active one, in that it draws energy from the vehicle to operate the equipment, resulting in an efficiency penalty of about 5-10% for the vehicle as a whole. Future thinking includes a more passive system, which could see carbon dioxide absorbed into a chemical matrix such as in a regular catalytic convertor. However, some energy input would presumably be required at some point to release this for subsequent use or storage.

Whether this ends up as a viable domestic vehicle solution is not entirely the point at this stage. One aspiration that the demonstration alluded to was its use in Heavy Goods Vehicles (HGV) which travel long distances with large loads and where battery technology may not be feasible. Other applications could be imagined, such as on board ships. More importantly, the underlying development of smaller and cheaper carbon capture technology offers real hope for long term management of emissions. It was also clear that this work and the other efforts being made by Saudi Aramco on CCS and EOR have very high level support in the country; the Saudi Minister of Petroleum and Mineral Resources, Ali Al-Naimi, spent two full days both at the conference and escorting the smaller group to Dhahran.


One million tonnes of CO2

The first week of November sees Shell officially open its first major carbon capture and storage (CCS) facility, the Quest project. It is in Alberta, Canada and will capture and store about one million tonnes of carbon dioxide per annum. Construction commenced back in September 2012 when the Final Investment Decision (FID) was taken and the plant started up and began operating for the first time in September of this year, just three years later. It is one of only a handful of fully integrated carbon capture and storage facilities operating globally. There are now many facilities that capture CO2 but mainly linked to Enhanced Oil Recovery which provides an income source for these projects.  Quest has dedicated CO2 storage, developed in an area some 65 kms from the capture site at a depth of about 2 kms.

Quest Construction

The Quest income source is not based on EOR; it has been able to take advantage of the government implemented carbon price that prevails within Alberta. Although the current carbon pricing mechanism has an effective ceiling of $15 per tonne CO2 which isn’t sufficient for CCS, let alone a first of its kind, it nevertheless provides a valuable incentive income to operate the facility which has been built on the back of two substantial capital grants from the Provincial and Federal governments respectively. A supplementary mechanism also in place in Alberta provide credits related to the carbon price mechanism for the early years of a CCS project, providing additional operating revenue for any new facility.

Canada, as it turns out, has become a global leader in CCS. The Quest facility is the second major project to be started up in Canada is as many years, with the Saskpower Boundary Dam project commencing operations this time last year.

As noted, Quest will capture and store approximately one million tonnes of carbon dioxide per annum. It demonstrates how quickly and efficiently large scale CO2 management can be implemented once the fiscal conditions are in place. Quest, which is relatively small in scale for an industry that is used to managing gas processing and transport in the hundreds of millions to billions of tonnes globally, demonstrates both the need for continued expansion of the CCS industry and the importance of carbon pricing policy to drive it forward. This single facility far surpasses the largest solar PV facilities operating around the world in terms of CO2 management. Take for example the Desert Sunlight Solar Farm in California, currently the fourth largest solar PV power station in the world. According to First Solar, it displaces 300,000 tonnes of CO2 annually, less than a third of that captured and permanently stored by Quest.

A key difference though is the use of the word displace. Alternative energy projects don’t directly manage CO2, they generate energy without CO2 emissions. But, as I have noted in previous postings and in my first book, the release of fossil carbon to the atmosphere is more a function of energy prices and resource availability. This means that even when a project like Desert Sunlight operates, the CO2 it notionally displaces may still be released at some other location or at some other time, depending on long term energy prices and extraction economics. There is no doubt that the CO2 is not being emitted right now in California, but that doesn’t necessarily resolve the problem. Quest, by contrast, directly manages the CO2 from fossil fuel extraction.

The requirement to provide alternative energy (i.e. without CO2 emissions) needs to grow, but we shouldn’t imagine that such action, by itself, will fully resolve the climate issue. That will come through the application of carbon pricing mechanisms by governments, driving the further expansion of both the alternative energy and CCS industries as a result.

A video about the Quest project, made by the constructors, Fluor, is available here.

Final steps towards Paris?

The last ten days have seen a rush by nations to publish their Intended Nationally Determined Contributions (INDCs), with the much anticipated INDC from India amongst those submitted. On Monday October 5th, the Co-Chairs of the ADP also released a proposal for a first draft of a new climate change agreement for Paris. So it has been a very busy few days, but are we any closer to a deal and could that deal have sufficient ambition to bend the emissions curve?

The India INDC is telling as an indicator of where the developing world really is, versus where the rapidly emerging economies such as China now find themselves. In the case of the latter group, there is thinking towards an emissions peak with China indicating that this will be around 2030 and continuing signals from the academic and research community in that country indicating that it may well be earlier. One such article appeared recently in the Guardian. But for the much poorer developing countries the story remains very different.

The submissions from India is 38 pages long, but of this some 28 pages is supporting evidence and context, explaining the reality of Indian emissions, the need to grow the economy to take hundreds of millions out of poverty and the expected use of fossil fuels to power industry, including areas such as metal smelting, petrochemicals and refining. With a focus on efficiency in particular, India expects to achieve a 33 to 35 percent reduction in CO2 intensity of the economy, but in reality that means a rise in energy related emissions to around 4 billion tonnes or more by 2030, up from some 2+ billion tonnes per annum at present (1.954 Gt in 2012, IEA). This could be tempered by a further element of their contribution which aims to increase forest sinks by some 3 billion tonnes of CO2 in total through to 2030.

There has been considerable speculation as to the renewable energy component of India’s INDC, with a hope that this would show enormous progress in solar deployment in particular. The INDC took the somewhat unusual route of talking in capacity additions, rather than generation (and therefore emissions). India aims to achieve 40% cumulative electric power capacity from non-fossil fuel based resources by 2030. This is significant, but less than it might appear. In a very simple example where 100 GW of generating capacity is comprised of 40 GW solar PV and 60 GW coal, the generation mix might be around 14% renewables and 86% coal. This is assuming a 20% capacity factor for the solar PV (maximum is 50% with day-night) and 80% capacity factor for the coal.

India has also put a considerable price tag on their INDC, with a mitigation effort of some US$ 834 billion through to 2030. In a previous post I looked at the costs assumed in the Kenyan INDC, which came to some $25 billion, but for a population of ~60 million (average through to 2030). With a projected population of some 1.5 billion by 2030, the finance side is in the same ballpark as the Kenyan INDC, albeit on the higher side.

Finally, the last few days have seen new draft text appear – shortened dramatically from some 80 pages to a manageable 20. But references to government led carbon markets, carbon pricing systems or even the use of transfer mechanisms between parties are largely missing. Article 34 of the Draft Decision does hint at the need to rescue the CDM from the Kyoto Protocol by referring to the need to build on Article 12 of the Protocol, but it will be of little use if there isn’t substantial demand for credits in developing and rapidly emerging economies. Simply creating a new crediting mechanism or even bringing the CDM into the Paris agreement won’t on its own direct the finance to the likes of Kenya and India. That demand and related finance flow will only come if the developed and emerging economies are building emissions trading systems (such as in China) and have the ability and confidence to transfer units related to it across their borders. So a great deal of work remains to be done.



FASTER carbon pricing mechanisms

  • Comments Off on FASTER carbon pricing mechanisms

Last week New York hosted amongst other events, the Papal visit, the UN General Assembly where some 150 world leaders gathered and Climate Week. Arguably this had the makings of a bigger coming together than COP21 itself, although many other issues were also on the agenda, such as the UN Sustainable Development Goals. Nevertheless, the climate issue progressed and the subject of carbon pricing was widely discussed, both how it might be implemented by governments and how companies could use carbon valuation internally in relation to project implementation and risk management.

A highpoint of the Climate Week events was the release by the World Bank of its FASTER principles on implementation of carbon pricing mechanisms . This is work to support the overall push by that organisation for greater uptake of explicit carbon pricing mechanisms at national level as governments consider how they might implement their INDCs.

FASTER is an acronym, with each of the terms further elaborated in a fairly readable 50 page accompanying document. The short version is as follows;

  • F – Fairness
  • A – Alignment of Policies
  • S – Stability and Predictability
  • T – Transparency
  • E – Efficiency and Cost-Effectiveness
  • R – Reliability and Environmental Integrity

I have a slight feeling that the acronym was thought up before the words, but each of the subject areas covered is relevant to the design of a carbon pricing mechanism by governments, such as a cap-and-trade system.

Importantly, the principles recognise many of the key issues that early cap-and-trade and taxation systems have confronted, such as dealing with competitiveness concerns, managing competing policies and complementing the mechanism with sufficient technology push in key areas such as carbon capture and storage and renewables. The latter requires something of a Goldilocks approach in that too little can result in wasted resource allocation, but too much while also being wasteful can end up becoming a competing deployment policy.

In the various workshops held during Climate Week, one aspect of the FASTER principles that did draw comment was the call for a “predictable and rising carbon price”. Predictability should be more about the willingness of government to maintain the mechanism over the long term, rather than a clear sign as to what exactly that price might be. For the most part, commodity markets exist, trade and attract investment on the basis that they are there and that the commodity itself will continue to attract demand for decades to come. We are still some way from a reasonable level of certainty that carbon pricing policies will be in place over many decades, given that they do not enjoy cross-party support in all jurisdictions.

Particularly for the case of a cap-and-trade system, a rising carbon price cannot be guaranteed. Rather, the system requires long term certainty in the level of the cap, after which the market will determine the appropriate price at any given point in time. This might rise as the EU ETS saw in its early days, but equally the widespread deployment of alternative energy sources or carbon capture and storage could see such a system plateau at some price for a very long time. Even within this, capital cycles could lead to the same price volatility as is seen in most commodity markets.

The guarantee of a rising price may not be the case for a tax based system either. Should emissions fall faster than the government anticipates, there could be popular pressure for an easing of the tax. As carbon tax becomes mainstream, we shouldn’t imagine it would be treated any differently to regular income based or sales tax levels, both of which can fluctuate.

The release of the FASTER Principles coincides with my own book on carbon pricing mechanisms, which was launched just prior to Climate Week. I cover many of the same topics, but drawing more on the events that have transpired over the last decade. Both these publications will hopefully be of interest to individuals and businesses in China, the government of which formally announced the implementation of a cap-and-trade system from 2017. This will be an interesting implementation to watch, in that it may well be the first such system that operates on a rising cap, at least for the first few years. Irrespective, the announcement ensured that Climate Week ended on a high note.

Why carbon pricing matters

An underpinning theme of my blog postings over the years has been discussion around government policy frameworks that seek to attach a cost to CO2 emissions – or so called carbon pricing. I have argued for them, commented on their inner workings and highlighted successes and failures along the way. At the start of each year I have published an overview of global progress, which of course has always featured the EU ETS, but now incorporates systems and approaches from countries such Kazakhstan and South Africa.

The importance of placing a cost on anthropogenic emissions of carbon dioxide cannot be understated, yet it took a fairly heroic effort from the World Bank this time last year to even get the subject of carbon pricing onto the agenda of the UN Climate Summit in New York. Despite the efforts in many countries, this important policy instrument still doesn’t get the recognition or attention it deserves. Yet, as I have argued on many occasions, including my e-book published to coincide with the Summit last year, the climate issue probably doesn’t get resolved without it.

So on the anniversary of that Summit, with Climate Week in New York coming around again, I have a second book being launched, devoted entirely to the all-important subject of carbon pricing as a national and global policy instrument.

Why Carbon Pricing MattersWhy Carbon Pricing Matters” looks at how various national pricing mechanisms work, why some of them may not work at all, what is wrong with others and of course seeks to answer the very question it poses in its title; why this policy instrument matters so much. With COP21 in Paris approaching, I have also argued the case for recognition of this instrument at the global level as well; this isn’t just about national policy implementation.

Not surprisingly the EU ETS gets a chapter to itself; there is a great deal of history here and many lessons learned, but some still to be recognized. As an Australian I have also ventured into the murky waters of carbon pricing policy in that country, which changes constantly and always throws up surprises. With a new Prime Minister, another round of debate may well be on the cards; we shall see.

Finally, I have again challenged the business community to think long and hard about this policy instrument – there are so many reasons why it is the best course to follow. Policy to manage carbon dioxide emissions is inevitable, so the choices we make now may impact the economy and environment for generations to come.

The book is available exclusively on Amazon, either for Kindle or iPads, iPhones and other devices with the Kindle App. This year, the book is also available in hard copy, given the number of requests I had for such treatment over the last twelve months. For those that haven’t caught up with my first attempt, it is now also available in hardcopy.

Where are the carbon market provisions?

  • Comments Off on Where are the carbon market provisions?

With just 100 days to run until COP21 in Paris and a tenth of that available for formal negotiations, the various national delegations met in Bonn last week to try and push forward the 80+ pages of text, replete with hundreds of bracketed options, into something that looks like a climate treaty. By all media outlet accounts progress was slow. Although the process hasn’t reached the point where alarm bells are ringing, the political pressure is mounting with UN Secretary General Ban Ki-Moon set to confront world leaders at the end of September in New York.

A key issue that remains under discussion yet with little to show for months of effort is that of the role of carbon pricing in the Paris agreement. While the decision to implement a carbon price within a national economy will always remain a sovereign one, encouragement from the top is nevertheless important. After all, if a carbon price doesn’t make its way into the global energy system, it’s difficult to see significant curtailment of fossil carbon extraction taking place or equally, widespread deployment of carbon capture and storage to directly manage emissions when fossil fuels are used. This message has been sent loudly from all quarters, including business organisations, multilateral agencies such as the World Bank, NGOs and legions of observers in the academic community. The start of the session in Bonn coincided with an article from the Harvard Kennedy School in Cambridge, Massachusetts which argued that encouraging linkage of heterogeneous national systems should be a key element of the Paris agreement. Professor Rob Stavins and his colleagues aren’t seeking a complex structure, but a simple provision. The article concludes that;

“. . . . the most valuable outcome of Paris regarding linkage might simply be the inclusion in the core agreement of an explicit statement that parties may transfer portions of their INDCs to other parties and that these transferred units may be used by the transferees to implement their INDCs. Such a statement would help provide certainty both to governments and private market participants. This minimalist approach will allow diverse forms of linkage to arise, among what will inevitably be highly heterogeneous INDCs, thereby advancing the dual objectives of cost effectiveness and environmental integrity in the international climate policy regime.”

Such a provision would encourage (carbon) price discovery through market transactions at both inter-governmental and inter-company levels, which in turn could be passed through the energy supply chain, thereby shifting investment decisions. This isn’t a big ask, yet it seems to be a step too far for the national negotiators, even from countries with a long history of market development and support.

This is exactly what the International Emissions Trading Association (IETA) has been advocating for since this time last year and while many of the Parties to the UNFCCC have nodded their heads in agreement, very little has happened. IETA reports from Bonn that the mitigation group under the ADP produced a table that outlines the various issues that fall under the ‘mitigation umbrella’ which Parties want to include in the core Paris Agreement. That table is organised into three columns:

  • A column of issues that are largely agreed by Parties to be in the core Agreement,
  • A column of issues which require ‘further clarity’ on placement in the core Agreement,
  • A column of issues that will be in Decisions at the COP in Paris.

Carbon markets- including their function, governance, accounting, usage eligibility and future work programme all currently fall into the “further clarity” column, where Parties are still debating how to proceed. On the positive side (there is a real need to be upbeat about something) IETA notes that at the start of the mitigation session, some fifteen Parties mentioned the importance of an explicit recognition of market mechanisms in the core of the Agreement. They included the EU, the US, Marshall Islands (on behalf of AOSIS), Columbia, New Zealand, Norway, Tuvalu, Brazil, Australia, Switzerland, South Korea, Japan and Panama. After hearing Parties’ views the co-facilitators proposed to set up a spin off group led by Brazil to look further at joint implementation (i.e. transfers, trading etc.) and market mechanisms (e.g. the CDM is a market mechanism). This probably should have happened a year ago, but like the rest of the agreement it is coming down to the wire.

So the Paris agreement inches forwards and with it the fate of a global carbon market, at least for the near to medium term. The next and presumably last (no others are currently scheduled) negotiating session before Paris is in mid-October.

Do we have a wicked problem to deal with?

  • Comments Off on Do we have a wicked problem to deal with?

Two recent and separate articles in Foreign Affairs highlight different routes forward for tacking the climate issue. One, by Michael Bloomberg, argues that the mitigation solution increasingly lies with cities (this isn’t just about city resilience) and the other puts the challenge squarely in front of the business community.

These are just two in a salvo of pre-Paris articles that seek to direct the negotiations towards a solution space, including some by me and other colleagues arguing the case for carbon pricing systems. The articles reminded me of a similar article in 2009, the Hartwell Paper, in which a group of UK economists cast the climate issue as a ‘wicked problem’, but still went on to propose a very specific solution (a big technology push funded by carbon taxes). That paper also built its argument on the back of the Kaya Identity, which I have argued simplifies the emissions problem such that it can lead to tangential solutions that may not deliver the necessary stabilization in atmospheric carbon dioxide. Nevertheless, there is still merit in focusing on a specific way forward – at least something useful might then get done.

But the description of the climate problem as ‘wicked’, is one that deserves further thought. The use of the word wicked in this context is different to its generally accepted meaning, but instead pertains to the immense difficulty of the problem itself. Wikipedia gives a good description;

A problem that is difficult or impossible to solve because of incomplete, contradictory, and changing requirements that are often difficult to recognize. The use of the term “wicked” here has come to denote resistance to resolution, rather than evil. Moreover, because of complex inter-dependencies, the effort to solve one aspect of a wicked problem may reveal or create other problems.

It is also important to think about which problem we are actually trying to solve. For example, it may turn out that the issue of climate change is immensely more difficult to solve than the issue of carbon dioxide emissions. There is now good evidence that emissions can be brought down to near zero levels, but this doesn’t necessarily resolve the problem of a changing climate. Although warming of the climate system is being driven by increasing levels of carbon dioxide in the atmosphere, the scale on which anthropogenic activities are now conducted can also impact the climate through different routes. Moving away from fossil fuels to very large scale production of energy through other means is a good illustration of this. In a 2010 report, MIT illustrated how very large scale wind farms could result in some surface warming because the turbulent transfer of heat from the surface to the higher layers is reduced as a result of reduced surface kinetic energy (the wind). This is because that energy is converted to electricity. This is not to argue that we shouldn’t build wind turbines, but rather to highlight that with a population of 7-10 billion people all needing energy for a prosperous lifestyle, society may inadvertently engage in some degree of geoengineering (large-scale manipulation of an environmental process that affects the earth’s climate) simply to supply it.

Even narrowing the broader climate issue to emissions, the problem remains pretty wicked. Inter-dependencies abound, such as when significant volumes of liquid fuels may be supplied by very large scale use of biomass or when efficiency drives an increase in energy use (as it has done for over 100 years), rather than the desired reduction in emissions.

An approach to managing wicked problems (Tim Curtis, University of Northampton) first and foremost involves defining the problem very succinctly. This involves locking down the problem definition or developing a description of a related problem that you can solve, and declaring that to be the problem. Objective metrics by which to measure the solution’s success are also very important. In the field of climate change and the attempts by the Parties to the UNFCCC to resolve it, this is far from the course currently being taken. There is immense pressure to engage in sustainable development, end poverty, improve access to energy, promote renewable technologies, save forests, solve global equity issues and use energy more efficiently. Although these are all important goals, they are not sufficiently succinct and defined to enable a clear pathway to resolution, nor does solving them necessarily lead to restoration of a stable climate. The INDC based approach allows for almost any problem to be solved, so long as it can be loosely linked to the broad categories of mitigation and adaptation. The current global approach may well be adding to the wickedness rather than simplifying or even avoiding it.

The short article referenced above concludes with a very sobering observation;

While it may seem appealing in the short run, attempting to tame a wicked problem will always fail in the long run. The problem will simply reassert itself, perhaps in a different guise, as if nothing had been done; or worse, the tame solution will exacerbate the problem.

In climate change terms, this translates to emissions not falling as a result of current efforts, or even if they do fall a bit this has no measurable impact on the continuing rise in atmospheric carbon dioxide levels.

But that is not to say we should give up, as the counter to this observation is that having defined a clear and related objective to the wicked problem that is being confronted, declare that there are just a few possible solutions and focus on selecting from among them. For me, that comes down to implementing a cost for emitting carbon dioxide through systems such as cap-and-trade or carbon taxation. As such, I am about to release a second book in my Putting the Genie Back series, this one titled Why Carbon Pricing Matters. It will be available from mid-September but can be pre-ordered now.

Why Carbon Pricing Matters

Who knew what and when?

A recent article in the Guardian, which was also carried through a number of other media outlets, implied some prior knowledge within the oil and gas industry of climate change and the impact of carbon dioxide emissions from fossil fuel use long before others had recognised its impact. The assertion was based on unearthed correspondence within Exxon where carbon dioxide emissions were discussed as early as 1981. The article goes on to say that “Climate change was largely confined to the realm of science until 1988, when the climate scientist James Hansen told Congress that global warming was caused by the buildup of greenhouse gases in the atmosphere, due to the burning of fossil fuels.”

In fact, information about the role of carbon dioxide as a greenhouse gas in the atmosphere has been widely available for over a century and has its foundation as far back as the early 19th Century, nearly 200 years ago. At that time, physicists were coming to terms with radiation physics and were attempting to understand why the Earth had a stable temperature. Knowing the energy falling on the planet from the Sun and after building an understanding of the radiation outwards from the Earth itself, the expected temperature of the planet could be derived. Unfortunately the calculation resulted in a number of somewhere around -15°C, which was clearly some 30°C lower than the observed temperature (about +15°C). Something else was in play, but at the time this was unclear. By 1862, an understanding of the role of certain gases in the atmosphere had been established, now more widely known as the “greenhouse effect”.

In 1896, Swedish chemist Svante Arrhenius used this information for a paper on the role of carbon dioxide that remains the foundation of 120 years of analysis of the Earth’s temperature and resulting climate (On the Influence of Carbonic Acid in the Air upon the Temperature of the Ground).


In this paper Arrhenius established a methodology for linking the change in surface temperature with the change in the level of carbon dioxide (carbonic acid as he referred to it as) in the atmosphere. Table VII of the paper showed the results of his calculation for different levels of carbon dioxide in the atmosphere ranging from K=0.67 (where K=1 for the level at the time) to K=3.0. For the latitude of the equator he derived the following results;

Carbonic acid = 0.67 Carbonic acid = 1.5 Carbonic acid = 2.0 Carbonic acid = 2.5 Carbonic acid = 3.0
Temperature change at Latitude 0° -3.02°C 3.15°C 4.95°C 6.42°C 7.3°C

The Arrhenius paper discusses the work of a Professor Högblom, another Swedish scientist of the day, who had even calculated how much the burning of coal at that time (500 million tonnes per annum) might change the surface temperature of the planet. The number was very small, but today annual fossil carbon extraction is some twenty to thirty times greater than this and more importantly the cumulative extraction (which we now know is what actually matters) since the late 19th century is hundreds of time this level.

By the late 1950s, thanks to the work of Charles Keeling of Scipps Institution of Oceanography in California, accurate measurements of atmospheric carbon dioxide were being made. In 1961, Keeling produced data showing that carbon dioxide levels were rising steadily in what became known as the “Keeling Curve”. In 1965, the first truly public warning as to the impact of rising levels of carbon dioxide in the atmosphere came from the President’s Science Advisory Committee (President Lyndon B. Johnson), with the words “Through his worldwide industrial civilization, Man is unwittingly conducting a vast geophysical experiment. . . . . This may be sufficient to produce measurable and perhaps marked changes in climate, and will almost certainly cause significant changes in the temperature and other properties of the stratosphere.

There have been many other such references and warnings, ranging from the 1988 testimony to Congress by NASA scientist James Hansen to Al Gore’s film Inconvenient Truth in 2006. Through all of these the story hasn’t really changed from the original calculations of Arrhenius in 1894, rather the understanding and methodology has been increasingly refined and improved.

The above timeline isn’t new and can be found in much more detail in many books, blogs and periodicals. Nor is it even close to comprehensive, with dozens of other scientists and institutions making important contributions to the early analysis, particularly in the 1950s. Nevertheless, it seems to need repeating. Although atmospheric warming may not have been a dinner table conversation in the 1980s, it wasn’t a secret either. A look at the use of the phrases “greenhouse effect”, “global warming” and “climate change” shows that they appeared in books in the 1970s.


Nor was it largely confined to the realm of science. Hollywood had even picked up on the issue in the 1973 film Soylent Green, where the greenhouse effect is specifically mentioned and is to some extent a core issue in the dystopian future that is postulated.

Soylent Green

Rather, what is unusual about the climate issue is the present day questioning of the background science that has come some 100-200 years after the scientific basis was first formulated and largely established, rather than at the time. In my forthcoming book, “Carbon Pricing Matters”, I touch on this issue as follows;

The need to manage global emissions and put a halt to the relentless build-up of carbon dioxide in the atmosphere requires the intervention of governments and cooperation between them to ensure their success; particularly when implemented through a cost on carbon dioxide emissions. There is an ongoing debate around the role of government and the degree to which it should be allowed to address the issue of global warming. There are many who believe that government should have only a modest role in society; others accept a much wider role, including one to solve broad-based issues that affect society at large, for example, the build-up of carbon dioxide in the atmosphere. For the latter group, a carbon price may not go far enough; it is a tool designed to tease out the solution over a generation or more. In the case of those who seek to limit the role of government, the imposition of a pricing mechanism across the entire economy can be seen as a step too far and may even raise questions about the foundation upon which the mechanism is based; the science of climate change.