Archive for the ‘China’ Category

COP20 in Lima ended its first full week on a mixed note, but with some positive signs for the ongoing process. The detailed discussions on the role of carbon markets under the SBSTA ended in disagreement and postponement which was disheartening, but there remains hope that this key subject will still see the light of day under the ADP during the coming days. Curiously, China (and others) opposed deepening the market discussion at SBSTA because of a lack of guidance from the ADP itself, but according to the Earth Negotiation Bulletin they stated in the ADP when reflecting on the Paris Agreement non-paper (ADP.2014.11.NonPaper) that “sections on market and non-market approaches, and new market-based mechanisms could prejudge discussions under the Subsidiary Bodies”. They seem to be setting themselves up for their own private Catch-22 there. It was also unfortunate that those who will pick up the ongoing challenge posed by carbon emissions and climate change were reported on as follows; “YOUNGOs noted that markets have not delivered what they promised and called for a moratorium on markets.” Perhaps they have been reading Naomi Klein’s book “This Changes Everything”.

One document in particular that drew attention was a paper circulated by Brazil, detailing an idea they had proposed at the October ADP meeting. Brazil have a long history of creative intervention in the process, being the country that “invented” the Clean Development Mechanism (CDM), which over the decade of its operational life has delivered tens, if not hundreds of billions of dollars (depends on your measurement definitions) of carbon finance to developing countries. It appears that Brazil is back to its creative best with a paper on “concentric differentiation”, which draws together both the concept of CBDR-RC* and the need for universal acceptance and eventual implementation of absolute targets as the route to atmospheric stabilisation of carbon dioxide.

The paper is best described by referencing a diagram included by Brazil (see below). Initially the INDCs** of various parties are scattered throughout the circles depending on their capabilities, with all developed countries starting in the middle. The crucial change to previous attempts at agreement is the inclusion of the proposal;

“developing country parties are expected to include in their respective NDC a type of economy-wide mitigation targets, leading to absolute targets over time”

This means that everyone migrates inwards as their capabilities allow, but that developing country parties at least start with an emissions goal, albeit intensity based, per capita based or based on a business-as-usual (BAU) deviation. Least developed economies start in the outer ring and are encouraged, but not required to present an INDC. Eventually all parties end up with absolute targets in the middle.

Brazil concept

This is a very encouraging proposal by Brazil and it also includes an extensive reference to markets, cap-and-trade, a reformed CDM and so on. But without wanting to take away from the importance of their thinking, it does raise the question of whether it is a decade or more too late. This is the proposal that should have come when parties were negotiating onward commitment periods of the Kyoto Protocol (KP), thereby giving that agreement new life and making it fit for purpose in the 21st Century. Almost all the necessary pieces were already in place, it simply (!! – nothing is ever that simple) required the addition of the middle ring and the provisions for promotion.

In KP language, the centre ring is the AAU (Assigned Amount Unit) world, now only home to the EU, Norway, Australia and Ukraine. Even Japan has left. The outer ring is the CDM world, which relies on financial flows from the inner ring. A renegotiation and addition to KP could have inserted the middle ring and promotion requirements and even developed a new carbon accounting unit for intensity based targets. With all three rings based on carbon units, the much needed “global carbon market” could have taken off relatively quickly. Such a design might have even brought back countries such as the USA given that its objections regarding developing country actions would have been addressed.

One aspect of the Brazil proposal that has some traction in the ADP is the idea that “backsliding” on INDCs won’t be permitted. In other words, once you have declared an INDC with an absolute target, that is where you stay.

The Brazil proposal is for the ADP and not for the KP; which means that parties will have to reinvent everything from scratch. But at least Brazil is there with its creative input leading the way. On to Week 2 in Lima where the Parties are at least into the process of negotiating text, rather than negotiating the procedures under which they would even consider text.

 

* Common but differentiated responsibilities and respective capabilities

**Intended nationally determined contributions

 

In a post earlier this year I compared the endless claims around renewable energy to the famous “reality distortion field” (RDF) that was first employed by the Talosians in the original series of Star Trek, but was later linked with the management style of Steve Jobs. The RDF was said to be Steve Jobs’ ability to convince himself and others to believe almost anything with a mix of charm, charisma, bravado, hyperbole, marketing, appeasement and persistence.

It would appear that after the announcement by the USA and China on their emissions agreement, a new reality distortion field is appearing around the subject of Chinese coal use.

It is very clear from all the reports coming from China that there is real concern about the use of coal and its link with the air quality in many major cities. It is also clear that the Chinese government is now starting to address this issue through the management of coal use, including the closure of older more polluting stations, the use of natural gas, the rapid build of nuclear and renewable energy capacity and so on. But coal use is continuing to increase, albeit more slowly than in recent years. While coal use in parts of the country may even decrease in the near term, as rapid development spreads to all corners of China over the next decade energy demand will continue to grow and total coal use will probably follow.

In the excitement around recent announcements, many organisations are now pinning their hopes on Chinese coal use peaking much earlier than the announced 2030 timeframe for a peak in overall emissions. As a result, when a revised energy strategy was announced in China recently, it was widely reported under the effects of the new distortion field.

According to two Chinese news reports that I could find (Xinhuanet and Shanghai Daily), the following is what was apparently announced;

The State Council promised more efficient, self-sufficient, green and innovative energy production and consumption in the Energy Development Strategy Action Plan (2014-2020). It included a cap set on annual primary energy consumption set at 4.8 billion tonnes of the standard coal equivalent until 2020. Annual coal consumption will be held below 4.2 billion tonnes until 2020, 16.3 percent more than the 3.6 billion tonnes burned last year, according to the National Coal Association.

My interpretation of this is that China has outlined its energy consumption goals for the period 2014 to 2020, but said nothing about the post 2020 period. However, this was reported very differently by others who decided to interpret the announcement as a cap on coal use by 2020. For example, the UNFCCC press release said;

The Chinese State Council also announced a new energy strategy action plan that includes ambitious measures to cap national coal consumption as early as 2020 at 4.2 billion tons, and reduce coal’s share of China’s primary energy mix to less than 62 percent by that same year.

The Climate Reality Project even had a small poster made to announce their interpretation of the plan;

China coal

Chinese coal use might peak in the medium term and emissions from coal will certainly have to peak before 2030 because of their announced INDC (national contribution) in-tandem with the announcement by the USA. But even then coal use may continue to grow if carbon capture and storage (CCS) can be successfully deployed at scale.

For me, the big announcement of the week is the proposed creation of a national carbon market to follow the regional trials now underway. Shanghai Daily reported the following;

China will open a nationwide carbon market in 2016 to help the government reduce emissions by 2030, the National Development and Reform Commission yesterday said in Beijing. Su Wei, an official at the climate change department under the NDRC, said he expected the market to be mature by 2020.

A robust and mature carbon market active throughout the 2020s could bring emissions from coal to a rapid standstill and even see them fall through fuel switching to natural gas and the deployment of CCS. Then it will be time to put up a poster.

The in-tandem announcement last week by the USA and China caught many by surprise, resulted in lots of applause and back slapping and then raised questions as to which country has the tougher or easier deal. A bit of simple analysis offered below may help answer that question.

In the long period between Kyoto and Copenhagen as commentators saw that the Kyoto Protocol probably wasn’t going to be sufficient to rein in global emissions, various ideas (re)appeared as to how the future reduction burden should be shared, particularly amongst countries with widely different development pathways. One idea that gained considerable prominence was known as Contraction and Convergence. In fact this idea was first proposed in 1990 by the Global Commons Institute (GCI).

Contraction refers to the ‘full-term event’ in which the future global total of greenhouse gas emissions from human sources is shrunk over time in a measured way to zero net-emissions within a specified time-frame.

Convergence refers to the full international sharing of the emissions contraction-event, where the ‘emissions-entitlements’ for all countries result from them converging on the declining global per capita average of emissions arising under the contraction rate chosen.

Last week the USA announced reductions of 26-28% by 2025 relative to 2005 and China announced a peaking in emissions by 2030. There really isn’t enough information given to fully dissect this, but a few simple assumptions makes for an interesting observation. For starters, I have assumed that energy emissions are a proxy for total emissions, in part because energy information is so readily available whereas information on methane, other GHGs and land use is much more difficult to piece together. The second assumption is that the 2020-2025 annual rate of reduction in the USA of about 2% p.a. continues through to 2030 (i.e. a reduction of 37% in 2030 relative to 2005) and the third assumption is that China exhibits a noticeable “glide path” towards a 2030 peak, rather than extreme growth that comes to a shuddering halt. At least for energy emissions, the picture looks something like the one below, but in the language of convergence, i.e. emissions per capita.

Emissions per capita USA and China

What becomes apparent is that the USA and China appear to have adopted a “Contraction and Convergence” approach, with a goal of around 10 tonnes CO2 per capita for 2030, at least for energy related emissions. For China this means emissions of some 14.5 billion tpa in 2030, compared with the latest IEA number for 2012 of 8.3 billion tonnes, so a 75% increase over 2012 or 166% increase over 2005. It also has China peaking at a level of CO2 emissions similar to Europe when it was more industrial, rather than ramping up to the current level of say, the USA or Australia (both ~16 tonnes). By comparison, Korea currently has energy CO2/capita emissions of ~12 tonnes, so China peaking at 10 is some 17% below that.

If the USA and China stayed in lockstep after 2030 with the same reduction pathway that plays out in the USA over the period 2020-2030, that might mean 6.6 tonnes CO2 per capita by 2040, or 9.5 billion tpa for China, which is still slightly higher than the current level.

The Australian Prime Minister, Tony Abbott, turned up in Queensland very recently to open a coal mine (the $US3.4 billion Caval Ridge Mine in Central Queensland, a joint venture between BHP and Mitsubishi which will produce 5.5 million tonnes annually of metallurgical coal and employ about 500 people). In a TV interview he managed to inflame a number of commentators around the world with his quote that “Coal is good for humanity, coal is good for prosperity, coal is an essential part of our economic future, here in Australia, and right around the world . . . . . “.

In this world in which it is difficult for politicians to say anything without getting criticised, he was perhaps in a losing situation before he spoke, simply because of the critical role that coal happens to play in the global economy cast against the reality that its cumulative carbon footprint is the single largest contributor over time to the build-up of CO2 in the atmosphere. More recently, increased coal use has also contributed most to the rapid rise in global emissions.

In one sense Abbott is correct in that over and over again coal has been the starting point for industrial development. I explored this in more depth a few months ago. Coal is an inexpensive fuel, but perhaps most importantly it requires only minimal technology to utilize. There is no need for pipelines, leakage monitoring or sophisticated storage facilities. One could argue that the most important piece of technology is a shovel. This was true in Victorian England, it is still true in parts of China today and it may well be the case as Africa begins to industrialize on a large scale. Of course, the development of Africa on the back of the vast coal resource that sits in that continent (200 billion tonnes in Botswana alone) will send emissions to levels that are hard to contemplate and even more difficult to reduce. That is highly unlikely to be good for humanity.

Contrast this with the latest offering from activist and author Naomi Klein, who has recently published a book on the climate issue; This Changes Everything. I am about a quarter of the way into this and try as I may to be objective, I am already wondering if I will ever finish it. I feel that I have already been vilified a hundred times over, not just as part of the fossil fuel industry that she likens to an evil empire, but also as a shareholder daring to expect a return on my investments (“. . . . pour their profits into shareholder pockets . . .” ). Ms. Klein seems to believe that nothing short of a return to collective ownership, community living, local production and simple lifestyles will be sufficient to reduce carbon dioxide emissions. She blames anybody and everybody for the problem of rising emissions and lands the issue squarely at the feet of the economic system that has served us pretty well for centuries. Apart from her argument for the need to change everything, it looks as if I will have to plough through another 300 pages to find out how she imagines this might actually happen. My guess is that it could be more wishful thinking than practical policy advice. Should I ever get to page 533 (!!) I will let you know, but I don’t know if I have a thick enough skin for that.

One reviewer did manage to make it to the end and his views can be found here.

In the midst of this cacophony of criticism, the rational middle continues on without much of a voice. But some of us are at least trying. My new book, Putting the Genie Back: 2°C will be harder than we think, hasn’t attracted the talk shows or celebrity endorsements yet, but I have at least had some good feedback from readers and that is very gratifying. I wrote it to try and present a more balanced view of the climate issue and it does seem to be succeeding in that regard.

While all fossil fuels are contributing to the accumulation of carbon dioxide in the atmosphere, coal stands apart as really problematic, not just because of its CO2 emissions today (see chart, global emissions in millions of tonnes CO2 vs. time), but because of the vast reserves waiting to be used and the tendency for an emerging economy to lock its energy system into it.

Global energy emissions

Global emissions, million tonnes CO2 from 1971 to 2010

I recently came across data relating to the potential coal resource base in just one country, Botswana, which is estimated at some 200 billion tonnes. Current recoverable reserves are of course a fraction of this amount, but just for some perspective, 200 billion tonnes of coal once used would add well over 100 billion tonnes of carbon to the atmosphere and therefore shift the cumulative total from the current 580 billion tonnes carbon to nearly 700 billion tonnes carbon; and that is just from Botswana. Fortunately Botswana has quite a small population and a relatively high GDP per capita so it is unlikely to use vast amounts of this coal for itself, but its emerging neighbours, countries like Zimbabwe, may certainly benefit. This much coal would also take a very long time to extract – even on a global basis it represents over 25 years of use at current levels of production.

This raises the question of whether a country can develop without an accessible resource base of some description, but particularly an energy resource base. A few have done so, notably Japan and perhaps the Netherlands, but many economies have developed by themselves on the back of coal or developed when others arrived and extracted more difficult resources for them, notably oil, gas and minerals. The coal examples are numerous, but start with the likes of Germany, Great Britain, the United States and Australia and include more recent examples such as China, South Africa and India. Of course strong governance and institutional capacity are also required to ensure widespread societal benefit as the resource is extracted.

Coal is a relatively easy resource to tap into and make use of. It requires little technology to get going but offers a great deal, such as electricity, railways (in the early days), heating, industry and very importantly, smelting (e.g. steel making). In the case of Great Britain and the United States coal provided the impetus for the Industrial Revolution. In the case of the latter, very easy to access oil soon followed and mobility flourished, which added enormously to the development of the continent.

But the legacy that this leaves, apart from a wealthy society, is a lock-in of the resource on which the society was built. So much infrastructure is constructed on the back of the resource that it becomes almost impossible to replace or do without, particularly if the resource is still providing value.

As developing economies emerge they too look at resources such as coal. Although natural gas is cleaner and may offer many environmental benefits over coal (including lower CO2 emissions), it requires a much higher level of infrastructure and technology to access and use, so it may not be a natural starting point. It often comes later, but in many instances it has been as well as the coal rather than instead of it. Even in the USA, the recent natural gas boom has not displaced its energy equivalent in coal extraction, rather some of the coal has shifted to the export market.

Enter the Clean Development Mechanism (CDM). The idea here was to jump the coal era and move directly to cleaner fuels or renewable energy by providing the value that the coal would have delivered as a subsidy for more advanced infrastructure. But it hasn’t quite worked that way. With limited buyers of CERs (Certified Emission Reduction units) and therefore limited provision of the necessary subsidy, the focus shifted to smaller scale projects such as rural electricity provision. These are laudable projects, but this doesn’t represent the necessary investment in large scale industrial infrastructure that the country actually needs to develop. Rooftop solar PV won’t build roads, bridges and hospitals or run steel mills and cement plants. So the economy turns to coal anyway.

This is one of the puzzles that will need to be solved for a Paris 2015 agreement to actually start to make a difference. If we can rescue a mechanism such as the CDM and have it feature in a future international agreement, it’s focus, or at least a major part of it, has to shift from small scale development projects to large scale industrial and power generation projects, but still with an emphasis on least developed economies where coal lock-in has yet to occur or is just starting.

As we head towards COP21 in Paris at the end of 2015, various initiatives are coming to fore to support the process. So far these are non-governmental in nature, for example the “We Mean Business”  initiative backed by organisations such as WBCSD, CLG and The Climate Group. In my last post I also made mention of the World Bank statement on Carbon Pricing.

2 C Puzzle - 3 pieces

This week has seen the launch of the Pathways to Deep Decarbonization report, the interim output of an analysis led by Jeffrey Sachs, director of the Earth Institute at Columbia University and of the UN Sustainable Development Network. The analysis, living up to its name, takes a deeper look at the technologies needed to deliver a 2°C pathway and rather than come up with the increasingly overused “renewables and energy efficiency” slogan, actually identifies key areas of technology that need a huge push. They are:

  • Carbon capture and storage
  • Energy storage and grid management
  • Advanced nuclear power, including alternative nuclear fuels such as thorium
  • Vehicles and advanced biofuels
  • Industrial processes
  • Negative emissions technologies

These make a lot of sense and much has been written about them in other publications, except perhaps the second last one. Some time back I made the point that the solar PV enthusiasts tend to forget about the industrial heartland; that big, somewhat ugly part of the landscape that makes the base products that go into everything we use. Processes such as sulphuric acid, chlorine, caustic soda and ammonia manufacture, let alone ferrous and non-ferrous metal processes often require vast inputs of heat, typically with very large CO2 emissions. In principle, many of these heat processes could be electrified, or the heat could be produced with hydrogen. Electrical energy can, in theory, provide this through the appropriate use of directed-heating technologies (e.g. electric arc, magnetic induction, microwave, ultraviolet, radio frequency). But given the diversity of these processes and the varying contexts in which they are used (scale and organization of the industrial processes), it is highly uncertain whether industrial processes can be decarbonized using available technologies. As such, the report recommends much greater efforts of RD&D in this area to ensure a viable deep emission reduction pathway.

Two key elements of the report have also been adopted by the USA and China under their U.S.-China Strategic and Economic Dialogue. In an announcement on July 9th, they noted the progress made through the U.S.-China Climate Change Working Group, in particular the launching of eight demonstration projects – four on carbon capture, utilization, and storage, and four on smart grids.

Reading through the full Pathways report I was a bit disappointed that a leading economist should return to the Kaya Identity as a means to describe the driver of CO2 emissions (Section 3.1 of the full report). As I noted in a recent post it certainly describes the way in which our economy emits CO2 on an annualised basis, but it doesn’t given much insight to the underlying reality of cumulative CO2 emissions, which is linked directly to the value we obtain from fossil fuels and the size of the resource bases that exist.

Finally, Sachs isn’t one to shy away from controversy and in the first chapter the authors argue that governments need to get serious about reducing emissions;

The truth is that governments have not yet tried hard enough—or, to be frank, simply tried in an organized and thoughtful way—to understand and do what is necessary to keep global warming below the 2°C limit.

I think he’s right. There is still a long way to go until COP21 in Paris and even further afterwards to actually see a real reduction in emissions, rather than reduction by smoke and mirrors which is arguably where the world is today (CO2 per GDP, reductions against non-existent baselines, efficiency improvements, renewable energy goals and the like). These may all help governments get the discussion going at a national or regional, which is good, but then there needs to be a rapid transition to absolute CO2 numbers and away from various other metrics.

“Show me the money” or CO2 mitigation at COP 19 ??

  • Comments Off

After the first week of the Warsaw COP, an observer could be excused for wondering what exactly the thousands of delegates meeting here were actually discussing. The closest the assembled negotiators, NGOs, business people and UN staff came to seriously talking about CO2 mitigation was when Japan announced its new 2020 target, an increase of 3% in emissions vs. 1990 (but positioned as a decrease of 3.8% vs. 2005 emissions). The change in target by Japan is a consequence of their decision to stop all use of nuclear power following the Fukushima disaster.

Curiously, the Japanese announcement was criticized by China, with their climate negotiator Su Wei saying: “I have no way of describing my dismay” about the revised target. The European Union also expressed disappointment and said it expected all nations to stick to promised cuts as part of efforts to halt global warming. Christiana Figueres, the Executive Secretary of the UNFCCC told Reuters that, “It is regrettable.” Somewhat predictably, she forecast that Japan’s planned investments in energy efficiency and renewable power would prove that the target could be toughened.

The Japanese decision sent one other major ripple through the football stadium holding the COP, that being the realization that national pledges are wide open to correction and change as circumstances dictate. Given that “pledge and review” is the likely foundation of the global deal that negotiators are aiming for in 2015, the Japanese move brings into question if such an approach has any legitimacy at all. Had the original Japanese target been underpinned by carbon market instruments with the robustness that we expect of financial markets, they might have felt compelled to buy the difference, which would have at least financed equivalent compensating mitigation actions in other parts of the world (although that being said, Canada took no such action when it failed to meet its goals under the Kyoto Protocol, it just rescinded its ratification instead).

But Japan and CO2 was a momentary distraction from the real discussion, money. This has appeared in a variety of forms and is endemic within the process. There is endless questioning about the $100 billion pledge made in Copenhagen;

In the context of meaningful mitigation actions and transparency on implementation, developed countries commit to a goal of mobilizing jointly USD 100 billion dollars a year by 2020 to address the needs of developing countries.

. . . with the most often repeated phrase from many countries being akin to “Show me the money”. Of course, the intention of the Copenhagen Accord was never to have $100 billion per annum deposited in the Green Climate Fund by Annex 1 countries, but to develop approaches which would see at least $100 billion per annum in mitigation and adaptation investment flow to developing countries, leveraged by instruments such as the Green Climate Fund. Unfortunately this interpretation of the pledge is largely ignored.

show-me-the-money-38mm 

Money also rears its head in the Loss and Damage discussion where agreement was reached in the dying hours of the Doha COP to agree a mechanism for this in Warsaw. The horrors appearing across the media of the aftermath of Typhoon Haiyan in the Philippines has of course focused minds on this discussion. In their various opportunities to speak in the plenary sessions, many nations called for the Loss and Damage issue to be rapidly progressed in Warsaw. 

Even within the discussions on technology transfer there is a renewed call from some nations for the opening up of patents (money) on a variety of “climate friendly” technologies.

The other half of any COP is the side event programme and here CO2 mitigation didn’t get much of an airing either. There were many side events on financing and adaptation and those on energy primarily focused on energy efficiency and renewables, neither of which offer a direct path to measurable and sustained CO2 mitigation. By contrast, the few side events on carbon capture and storage were rather sparsely attended.

The rather sparsely attended but content rich GCCSI event on CCS developments.

The rather sparsely attended but content rich GCCSI event on CCS developments.

 Even the “Green Climate” exhibition in the Palace of Culture was principally focused on energy efficiency in buildings, solar PV and waste management. However, Shell at least kept the CCS flag waving with its novel CCS lift / elevator (something of a virtual ride to 2 kms below the surface where CO2 could be safely stored).

The Shell CCS “lift” in the Palace of Culture and Science in Warsaw.

The Shell CCS “lift” in the Palace of Culture and Science in Warsaw.

So to week 2 of the Warsaw COP, which will likely end in the usual rush to a declaration of some description at the end, although in the very last hours of Week 1 on Saturday night the collected negotiators came away with nothing agreed on FVA and NMM.

Redrawing the Energy-Climate Map

  • Comments Off

The world is not on track to meet the target agreed by governments to limit the long term rise in the average global temperature to 2 degrees Celsius (°C).

International Energy Agency, June 2013

The International Energy Agency (IEA) is well known for its annual World Energy Outlook, released towards the end of each year. In concert with the WEO come one or more special publications and this year is no exception. Just released is a new report which brings the IEA attention back squarely on the climate issue, Redrawing the Energy-Climate Map. The IEA have traditionally focused on the climate issue through their 450 ppm scenario. While they continue to do that this time, they are also going further with a more pragmatic model for thinking about emissions, that being the “trillion tonne” approach. I have discussed this at some length in previous posts.

The report looks deeply into the current state of climate affairs and as a result fires a warning shot across the bows of current national and UNFCCC efforts to chart a pathway in keeping with the global goal of limiting warming to 2 °C above pre-industrial levels. The IEA argue that we are on the edge of the 2 °C precipice and recommends a series of immediate steps to take to at least stop us falling in. With the catchy soundbite of ” 4 for 2° “, the IEA recommend four immediate steps in the period from now to 2020;

  1. Rapid improvements in energy efficiency, particularly for appliances, lighting, manufacturing machinery, road transport and within the built environment.
  2. Phasing out of older inefficient coal fired power stations and restricting less efficient new builds.
  3. Reductions in fugitive methane emissions in the oil and gas industry.
  4. Reductions in fossil fuel subsidies.

These will supposedly keep some hope of a 2°C outcome alive, although IEA makes it clear that much more has to be done in the 2020s and beyond. However, it didn’t go so far as to say that the 2° patient is dead, rather it is on life support.

I had some role in all this and you will find my name in the list of reviewers on page 4 of the report. I also attended a major workshop on the issue in March where I presented the findings of the Shell New Lens Scenarios and as a result advocated for the critical role that carbon capture and storage (CCS) must play in the solution set.

As a contributor, I have to say that I am a bit disappointed with the outcome of the report, although it is understandable how the IEA has arrived where it has. There just isn’t the political leadership available today to progress the things that really need to be done, so we fall back on things that sound about right and at least are broadly aligned with what is happening anyway. As a result, we end up with something of a lost opportunity and more worryingly support an existing political paradigm which doesn’t fully recognize the difficulty of the issue. By arguing that we can keep the door open to 2°C with no impact on GDP and by only doing things that are of immediate economic benefit, the report may even be setting up more problems for the future.

My concern starts with the focus on energy efficiency as the principal interim strategy for managing global emissions. Yes, improving energy efficiency is a good thing to do and cars and appliances should be built to minimize energy use, although always with a particular energy price trajectory in mind. But will this really reduce global emissions and more importantly will it make any difference by 2020?

My personal view on these questions is no. I don’t think actions to improve local energy efficiency can reduce global emissions, at least until global energy demand is saturated. Currently, there isn’t the faintest sign that we are even close to saturation point. There are still 1-2 billion people without any modern energy services and some 4 billion people looking to increase their energy use through the purchase of goods and services (e.g. mobility) to raise their standard of living. Maybe 1-1.5 billion people have reached demand saturation, but even they keep surprising us with new needs (e.g. Flickr now offers 1 TB of free storage for photographs). Improvements in efficiency in one location either results in a particular service becoming cheaper and typically more abundant or it just makes that same energy available to any of the 5 billion people mentioned above at a slightly lower price. Look at it the other way around, which oil wells, coal mines or gas production facilities are going to reduce output over the next seven years because the energy efficiency of air conditioners is further improved. The fossil fuel industry is very supply focused and with the exception of substantial short term blips (2008 financial crisis), just keeps producing. Over a longer timespan lower energy prices will change the investment portfolio and therefore eventual levels of production, but in the short term there is little chance of this happening. This is a central premise of the book I recently reviewedThe Burning Question.

Even exciting new technologies such as LED lighting may not actually reduce energy use, let alone emissions. Today, thanks to LEDs, it’s not just the inside of buildings where we see lights at night, but outside as well. Whole buildings now glow blue and red, lit with millions of LEDs that each use a fraction of the energy of their incandescent counterparts – or it would be a fraction if incandescent lights had even been used to illuminate cityscapes on the vast scale we see today. The sobering reality is that lighting efficiency has only ever resulted in more global use of lighting and more energy and more emissions, never less.

doha_skyline_560px

An analysis from Sandia National Laboratories in the USA looks at this phenomena and concludes;

The result of increases in luminous efficacy has been an increase in demand for energy used for lighting that nearly exactly offsets the efficiency gains—essentially a 100% rebound in energy use.

 I don’t think this is limited to just lighting. Similar effects have been observed in the transport sector. Even in the built environment, there is evidence that as efficiency measures improve home heating, average indoor temperatures rise rather than energy use simply falling.

The second recommendation focuses on older and less efficient coal fired power stations. In principle this is a good thing to do and at least starts to contribute to the emissions issue. This is actually happening in the USA and China today, but is it leading to lower emissions globally? In the USA national emissions are certainly falling as natural gas has helped push older coal fired power stations to close, but much of the coal that was being burnt is now being exported, to the extent that global emissions may not be falling. Similarly in China, older inefficient power stations are closing, but the same coal is going to newer plants where higher efficiency just means more electricity – not less emissions. I discussed the efficiency effect in power stations in an old posting, showing how under some scenarios increasing efficiency may lead to even higher emissions over the long term. For this recommendation to be truly effective, it needs to operate in tandem with a carbon price.

The third and fourth recommendations make good sense, although in both instances a number of efforts are already underway. In any case their contribution to the whole is much less than the first two. In the case of methane emissions, reductions now are really only of benefit if over the longer term CO2 emissions are also managed. If aggressive CO2 mitigation begins early, and is maintained until emissions are close to zero, comprehensive methane (and other Short Lived Climate Pollutants – SLCP) mitigation substantially reduces the long-term risk of exceeding 2˚C (even more for 1.5˚C). By contrast, if CO2 emissions continue to rise past 2050, the climate warming avoided by SLCP mitigation is quickly overshadowed by CO2-induced warming. Hence SLCP mitigation can complement aggressive CO2 mitigation, but it is neither equivalent to, nor a substitute for, near-term CO2 emission reductions (see Oxford Martin Policy Brief – The Science and Policy of Short Lived Climate Pollutants)

After many lengthy passages on the current bleak state of affairs with regards global emissions, the weak political response and the “4 for 2°C “ scenario, the report gets to a key finding for the post 2020 effort, that being the need for carbon capture and storage. Seventy seven pages into the document and it finally says;

In relative terms, the largest scale-up, post-2020, is needed for CCS, at seven times the level achieved in the 4-for-2 °C Scenario, or around 3 100 TWh in 2035, with installation in industrial facilities capturing close to 1.0 Gt CO2 in 2035.

Not surprisingly, I think this should have been much closer to page one (and I have heard from the London launch, which I wasn’t able to attend, that the IEA do a better job of promoting CCS in the presentation). As noted in the recently released Shell New lens Scenarios, CCS deployment is the key to resolving the climate issue over this century. We may use it on a very large scale as in Mountains or a more modest scale as in Oceans, but either way it has to come early and fast. For me this means that it needs to figure in the pre-2020 thinking, not with a view to massive deployment as it is just too late for that, but at least with a very focused drive on delivery of several large scale demonstration projects in the power sector. The IEA correctly note that there are none today (Page 77 – “there is no single commercial CCS application to date in the power sector or in energy-intensive industries”).

Of course large scale deployment of CCS from 2020 onwards will need a very robust policy framework (as noted in Box 2.4) and that will also take time to develop. Another key finding that didn’t make it to page one is instead at the bottom of page 79, where the IEA state that;

Framework development must begin as soon as possible to ensure that a lack of appropriate regulation does not slow deployment.

For those that just read the Executive Summary, the CCS story is rather lost. It does get a mention, but is vaguely linked to increased costs and protection of the corporate bottom line, particularly for coal companies. The real insight of its pivotal role in securing an outcome as close as possible to 2°C doesn’t appear.

So my own “ 2 for 2°C before 2020“ would be as follows;

  1. Demonstration of large-scale CCS in the power sector in key locations such as the EU, USA, China, Australia, South Africa and the Gulf States. Not all of these will be operational by 2020, but all should be well underway. At least one “very large scale” demonstration of CCS should also be underway (possibly at the large coal to liquids plants in South Africa).
  2. Development and adoption of a CCS deployment policy framework, with clear links coming from the international deal to be agreed in 2015 for implementation from 2020.

But that might take some political courage!

The Global Status of CCS

The Global Carbon Capture and Storage Institute has just released its 2012 report on the current status of CCS around the world. The headline is that CCS is clearly up and running and CO2 is being sequestered. Around the world, eight large-scale CCS projects are storing about 23 million tonnes of CO2 each year. With a further eight projects currently under construction (including two in the electricity generation sector), that figure will increase to over 36 million tonnes of CO2 a year by 2015. This is approximately 70 per cent of the IEA’s target for mitigation activities by CCS by 2015.

The flip side of this is that the rate of deployment is far below anything that remotely passes for a 2°C trajectory. The report finds that in order to maintain the path to the 2°C target, the number of operational projects must increase to around 130 by 2020, from the 16 currently in operation or under construction. Such an outcome looks very unlikely as only 51 of the 59 remaining projects captured in the Global CCS Institute’s annual project survey plan to be operational by 2020, and inevitably some of these will not proceed.

I have discussed CCS many times in the past. Given the continued abundance of fossil resources, their ease of use for both mobile and stationary energy generation, combined with the fact that they continue to be very cost competitive as new extraction technologies are introduced, it is therefore highly likely that we continue to make use of them. But as the report notes, we need to limit the increase in the stock of CO2 in the atmosphere to 1000 Gt this century (giving a 50 per cent chance of limiting global temperature rise to 2°C) which in turn requires energy-related CO2 emissions to fall to zero by 2075. The only way to square this circle will be large scale deployment of CCS.

One of the surprising aspects of the report is the review of where CCS is actually happening. Conventional wisdom says the EU then North America and that is certainly true for many of the more advanced projects, but close behind is China which has a number of projects in the identification stage of development. In fact the report finds that more than half of all newly-identified projects are located there. Using CO2 for Enhanced Oil Recovery (EOR) is being investigated as a revenue option in all the projects.

  • Daqing Carbon Dioxide Capture and Storage Project (Identify stage) – a super-critical coal-fired power plant that would capture around 1 Mtpa of CO2 through oxyfuel combustion, developed by the China Datang Group in partnership with Alstom.
  • Dongying Carbon Dioxide Capture and Storage Project (Identify stage) – a new build coal-fired power generation plant with a planned capture capacity of 1 Mtpa of CO2, also developed by the China Datang Group.
  • Shanxi International Energy Group CCUS Project (Identify stage) – a new, super-critical coal-fired power plant with oxyfuel combustion being developed in partnership with Air Products, with a capture capacity of more than 2 Mtpa of CO2.
  • Jilin Oil Field EOR Project (Phase 2) (Identify stage) – EOR operations at the Jilin oil field, where around 200,000 tpa of CO2 from a natural gas processing plant are currently being injected, are scheduled to be expanded to more than 800,000 tpa from 2015.
  • Shen Hua Ningxia Coal to Liquid Plant Project (Identify stage) – a new build coal-to-liquids (CTL) facility developed that would capture around 2 Mtpa of CO2.

Perhaps the most disappointing news comes from Europe, where the value of the main CCS capital support mechanism has been reduced to a fraction of its anticipated amount following the collapse of the EU carbon market to some €8 per tonne of CO2. The EC policy objective of having up to 12 commercial-scale demonstration plants operating in Europe by 2015 is no longer achievable, with 4–5 projects operating in the next 5–6 years being a more realistic scenario. I commented on this back in June.

As well as giving a comprehensive breakdown of all the current projects, the report does the same for policy development, support mechanisms, storage potential and the progress in the technology itself. If you want to know more about CCS then this is truly a “one stop shop”.

The report download page with laptop, iPad and Kindle versions can be found here. Alternatively, you can go directly to the PDF version here.

Five short stories from WEO

The IEA’s World Energy Outlook (WEO) is an annual tradition, the result of much work, data analysis and presentation. A formative volume is produced for all to read and digest, but few of  us have the time to do so in the detail required. As such we rely to some extent on IEA presentations and summary documents. One such presentation was given by IEA Chief Economist Dr. Fatih Birol in Shell Centre last week, not for Shell but for the British Institute of Energy Economics. Rather than a WEO “tour de force”, the format was closer to storytelling, or more correctly short stories. Here are five pearls that emerge from the most recent WEO:

1.  A new trend in energy efficiency

Much emphasis is placed on the need for energy efficiency from policy makers and business leaders. We hear about how well certain enterprises are doing and how we need to replace our domestic boiler, insulate our homes and use public transport. Some leaders have even argued that energy efficiency is close to a single solution to energy prices, emissions and access in developing countries. But the stark reality of energy efficiency trends at the global level is the opposite to that which is desired. There is doubtless an impact here related to the financial crisis, but even before that the trend had started shifting.

2.  Oil security concerns shift

Perhaps since the gasoline lines of the 1970’s but certainly since 9/11 in 2001, a focus of US foreign policy has been security in the Middle East and by implication oil supply security. Although Europe has long been a significant importer of oil its attention has been more focused on Russian gas supplies. But all that is due to change. In the timeframe of the WEO (to 2035) China will become the world’s largest oil importer and the US dependence on oil from outside North America will decline. With increased domestic (NA) production from oil sands and light tight oil (using a similar extraction technology to shale gas), in combination with much tougher energy efficiency standards for cars, light trucks and trucks, US import demand will fall. This could have an eventual impact on global governance as China starts to look at Middle East supply and worries about its security. 

3.  The winner was coal

In the first decade of this century, coal accounted for nearly half of the increase in global energy use, with the bulk of the growth coming from the power sector in emerging economies. Next was natural gas, then oil and after that renewable energy. Nuclear was a distant fourth. That’s an order which is almost the opposite of where we should be going with emissions reduction as a high priority.

4.   Modern energy for all

Basic energy services are an essential part of life today, yet 1.3 billion people in the world live without electricity and 2.7 billion live without clean cooking facilities. The need to correct this has become a global imperative and remarkably this could be done with almost no impact on global energy demand and global emissions.

The flip side to this story is the point that I raised back in December when the UNFCCC declared that alleviation of poverty and energy access would become a key priority with mitigation and adaptation. Although “energy for all” is a critical issue, arguably it shouldn’t be on the agenda of the UNFCCC. Their focus needs to be squarely on the other 99.3% of emissions. “Energy for all”, as the IEA have clearly demonstrated, is not a climate change issue.

5.  The weight of a world issue shifts to Chinese shoulders

One of the longstanding arguments in the global debate on climate change has been that the burden rested with developed countries in that they had created the problem during their long industrial development era. But that situation is rapidly changing. By 2035 cumulative emissions from China will have exceeded the EU and will be rapidly approaching the US. China’s per capita emissions will also match the OECD average by then. This by no means puts the USA and EU in the clear, but it does shift the burden solidly to a tripartite response. 

Thanks to Dr Birol and the IEA for a stimulating presentation.