Archive for the ‘Europe’ Category

Talking about climate change

  • Comments Off

From the rarefied atmosphere of the Swiss Alps to a small London theatre, there has been a lot said about climate change over the last couple of weeks.

The World Economic Forum held its annual retreat at Davos, with climate change high on the agenda. Much of the discussion was about building additional momentum towards a UNFCCC led agreement in Paris at the end of this year. Business leaders, politicians and other prominent people from civil society reiterated the need for a strong outcome. World Bank President Jim Yong Kim was more specific and called on leaders to “break out of the small steps of business as usual and provide that structure, first and foremost by putting a price on carbon”. The call for more emphasis on carbon pricing has been a strong World Bank theme for a year now.

While there was good talk emanating from Davos, in Brussels the scene was very different. The EU Parliament ITRE Committee (Industry, Research and Energy) was apparently not listening to the calls from Davos and instead ended up with “no opinion” on the important proposals required to support the carbon price delivered by the EU ETS, through the early implementation of the proposed Market Stability Reserve (MSR). The “no opinion” outcome was the result of not supporting the need to start the MSR early and use the 900 million backloaded allowances as a first fill, but then rejecting an alternative proposal on how the MSR should be taken forward. The only silver lining in this otherwise dim cloud is that the debate is about the proposed structure of the MSR, rather than whether an MSR should be present at all. Nevertheless, it is disappointing that some industry and business groups in Brussels did not seem aligned with the recognition that many of their member CEOs were giving to the carbon pricing discussion in Davos just a few hundred miles away.  The proposals for the MSR now have to go to the important ENVI (Environment) Committee in Parliament as well as to the Member States, where there is cause for optimism that they will adopt a position in favour of a stronger MSR reform.

One business group did give very strong support to the MSR proposals, the UK and EU based Corporate Leaders Group (CLG). This organisation started its life 10 years ago, which means it is also celebrating a landmark birthday along with the EU ETS. The CLG sits under the Cambridge University Institute for Sustainability Leadership, with the Prince of Wales as its patron. This is a group that has been talking about the need for a robust carbon price in the EU for many years and backing that talk up with strong advocacy in Brussels and various Member State capitals. Birthday celebrations were held in London to mark the occasion, with the Prince of Wales in attendance. The CLG was a step ahead of the World Bank with its own Carbon Price Communique back in 2012. While the World Bank effort has garnered greater support than the original CLG effort, it is worthy of recognition that the current push for this important instrument had its roots in the business community.

Despite the important talk in Brussels and Davos, the real talk on climate change came from a small theatre in Sloan Square, London. Climate change might seem like an odd subject for the London theatre scene, but nevertheless there it was. Chris Rapley, former head of the British Antarctic Survey, more recently the head of the Science Museum and now Professor of Climate Science at University College London, staged an engaging one man show to talk about the climate. This wasn’t the Inconvenient Truth with its high profile narrator and 200 odd PowerPoint slides, but more a fireside chat about paleo-history, the atmosphere, trace gases and the global heat balance. Here was a man who had spent the majority of his life studying this issue, from field measurements in Antarctica to computer analysis of satellite observations and his message was very clear; we are in trouble. There was no alarm, no hysteria and no predictions of an apocalypse, but just a softly spoken physicist explaining his job and describing with great clarity what he had learned over the course of some forty years of hard work. The audience was engrossed by the monologue and the gently changing backdrop of graphs and charts that seemed to envelop the speaker.

Chris Rapley 2071

This production is a unique approach to communicating the climate change issue to a new audience. It is small in scale, but it will get people thinking about the subject and hopefully discussing it in less partisan terms. The show, 2071, has now completed a second short run in London but may be destined for some other venues. I would highly recommend it.

Ten years of the EU ETS

This month the EU Emissions Trading System is ten years old – which in itself is quite an achievement as there were those at the start who said it wouldn’t last and any number of people over the years who have claimed that it doesn’t work, is broken and hasn’t delivered. Yet it stays with us, continues to be the bedrock of the EU policy framework to manage CO2 emissions and despite issues along the way, is now likely to receive a significant overhaul in time for 2020 when a new global deal on climate change should kick-in.

Check-under-the-hood

The ETS started life as a relatively short draft Directive (EU ETS Draft Directive 2001) back in 2001 and has expanded since then with appendages such as the linkage Directive and the 2008 Energy and Climate package (e.g. NER300) and will likely expand again with the proposed addition of the Market Stability Reserve. But the simple concept of a finite and declining pool of allowances being allocated, traded and then surrendered as CO2 is emitted has remained and despite various other issues over the years the ETS has done this consistently and almost faultlessly year in and year out. The mechanics of the system have never been a problem.

The one issue that has plagued the ETS has been the price – from some arguing it was too high at the start to many now concerned (including me) that the surplus of allowances and consequent low price has stopped all direct investment in emission reduction projects.

10 Years of the EU ETS

With investment as a goal, the heyday of the system was 2007-2008 when Phase II was underway and confidence was rising that a long term carbon price signal had emerged in Europe to guide decarbonisation efforts going forward. There was plenty of evidence that this was really the case. Fuel switching to gas was gathering pace, innovative projects were being considered in many industrial facilities and when the European Parliament agreed the NER300, some 20 CCS projects were initially tabled with the Commission for consideration. After all, at a CO2 price of ~€30 that meant ~€9 billion  of project funding and sufficient support for the operational cost of CCS. But as the price fell to a low of <€4 in April / May 2013, everything evaporated. The ETS became more of a compliance formality than an investment driver.

Last week I participated in a lunchtime seminar on the Future of the ETS held within the European Parliament in Strasbourg. Unlike some lunchtime events I have attended over the years, this one was packed, with standing room only. There is real and genuine interest amongst many MEPs to reform this instrument and return the CO2 price to its rightful position as the key market signal to drive change in the energy system. After all, there are plenty of good reasons to do this, starting with the most important reason of all – it’s the most economically effective way of doing the job.

The seminar focussed primarily on the proposed Market Stability Reserve (MSR), which is an intended pool of allowances that can be drawn on in the event of excessive tightness in the allowance supply / demand balance or added to when a surplus prevails. The conceptual design of this mechanism now seems to be largely agreed, but the operating parameters are still being negotiated between Member States. Most importantly is the question of a “first fill” of allowances and the intended start date of the process. Given the significant surplus that now exists, it makes sense to do the “first fill” with the 900 million allowances withheld from auctioning under the backloading initiative and to start the MSR much earlier than 2021 (i.e. 2017) so that it can continue to absorb the current overhang.

Recalibrating the EU ETS and having it fit for purpose as other countries implement their UNFCCC INDCs (Intended Nationally Determined Contributions) to also reduce emissions will offer the EU a true competitive advantage in a challenging global economy. It will allow the EU to achieve similar or even greater reductions than others, but at lower cost.

Carbon pricing in 2014

While there was a great deal of focus throughout 2014 on the road to Paris and the UNFCCC process that is taking us all there, the real developments of the year were around carbon pricing. But it wasn’t all smooth sailing.

From my own perspective, going through the discipline of producing an e-book on the climate issue helped me think through the real rationale for a carbon price. I had always looked at it through the “Pigouvian Tax” lens (a pricing correction for a negative externality), which is certainly a good one, but it doesn’t really frame the issue in terms of resource extraction economics and the stock nature of CO2 accumulation in the atmosphere. My slightly different take on all this is explained in my book and is based on a simple relationship between resource availability and eventual warming of the climate system. I concluded that;

Extraction economics and warming

In short, the eventual temperature rise is directly linked to the size of the global fossil fuel resource base (in GtC) multiplied by some extraction fraction which in turn is a function (f) of the difference between the price of energy and the extraction cost. In a world of sunk infrastructure costs, the marginal extraction cost might be very low, which either means that the energy price has to fall very low to limit temperature rise or another factor has to be introduced to shift the extraction economics, i.e. a cost for emitting carbon dioxide from energy use, or what is now simply called “a carbon price”.

Extraction economics and warming with carbon price

Not surprisingly then, putting a price on carbon is arguably the most important step that can be taken to limit warming. Trying to drive the price of energy down with alternatives is another option, but success is less than assured.

While the carbon pricing story has long been recognised, it is nevertheless proving difficult to implement. In the UNFCCC process it has been getting almost no airtime at all, at least until 2014. This was the year that the World Bank picked up the story in big way and by the time of the September UN Climate Summit in New York managed to have it solidly on the agenda. This was supported by their Statement on Carbon Pricing, signed by some 70+ governments and 1000+ companies. The World Bank effort picked up where the UK Corporate Leaders Group on Climate Change had taken the issue two years earlier with its Carbon price Communique.

Nevertheless, while the fact that a good portion of the UN Climate Summit and its multitude of side events was about carbon pricing and therefore deserves applause, the difficulty of translating well-meaning macro level support into granular policy implementation remains both very challenging and time consuming.

The unfortunate event of the year was the repeal of an active carbon pricing framework by the Australian government, particularly after the decade of effort and political capital that had gone into establishing it. Although Australia isn’t large in terms of global emissions, as a leading resource producer and developed economy it tends to punch above its weight in terms of external influence. Fortunately this event was eclipsed by a much bigger development that came a bit later in the year and may well be the one that sets the scene for real action on emissions in the 2020s. China announced that a single national carbon pricing system would be implemented from 2016, presumably replacing the multiple trials now underway. This system would mature over the following years such that it will be fully operational from 2020, which is when the expected Paris agreement will also become operational.

Mexico also established a modest carbon price in its economy and the Chilean government approved a pricing system from 2018 within the power generation sector. Korea proceeded with its plans for an emissions trading system, agreeing to a formal start this January. Discussions hotted up in North America, with Oregon and Washington considering pricing and Ontario in Canada also starting to think about possible options. The Quebec-California link, formalised in 2013, went into operation.

Another noteworthy event of the year was the shift in stance by the European Institutions and Member States on the role that government needs to play once carbon pricing markets and mechanisms are established. As the price in the EU ETS has fallen over recent years, many have argued that the market should be left to correct over time. But with a structural surplus showing no sign of disappearing, that view is changing. With the support of the Commission the EU Parliament approved the backloading of allowance auctioning to later in the current ETS Phase (i.e. from 2014 to 2018-2020) and is now in the process of developing and gaining approval for a permanent mechanism, the Market Stability reserve, to do a similar job. Timing is of the essence and the EU Institutions and Member States need to implement such reforms as soon as possible, and no later than 2017, to incentivise real investment in lower carbon technologies over the next decade.

Bringing all this together and catalysing the development of a global carbon market remains on the the “to-do” list, with the UNFCCC in a prime position to take the lead as part of the Paris process – but more on that another day.

Slowly but surely the map is changing colour, although much remains to be done. Carbon pricing remains contentious, both in its implementation and ongoing management.

Carbon pricing 2015

Carbon pricing 2014

Carbon pricing 2013

Carbon pricing 2012

The in-tandem announcement last week by the USA and China caught many by surprise, resulted in lots of applause and back slapping and then raised questions as to which country has the tougher or easier deal. A bit of simple analysis offered below may help answer that question.

In the long period between Kyoto and Copenhagen as commentators saw that the Kyoto Protocol probably wasn’t going to be sufficient to rein in global emissions, various ideas (re)appeared as to how the future reduction burden should be shared, particularly amongst countries with widely different development pathways. One idea that gained considerable prominence was known as Contraction and Convergence. In fact this idea was first proposed in 1990 by the Global Commons Institute (GCI).

Contraction refers to the ‘full-term event’ in which the future global total of greenhouse gas emissions from human sources is shrunk over time in a measured way to zero net-emissions within a specified time-frame.

Convergence refers to the full international sharing of the emissions contraction-event, where the ‘emissions-entitlements’ for all countries result from them converging on the declining global per capita average of emissions arising under the contraction rate chosen.

Last week the USA announced reductions of 26-28% by 2025 relative to 2005 and China announced a peaking in emissions by 2030. There really isn’t enough information given to fully dissect this, but a few simple assumptions makes for an interesting observation. For starters, I have assumed that energy emissions are a proxy for total emissions, in part because energy information is so readily available whereas information on methane, other GHGs and land use is much more difficult to piece together. The second assumption is that the 2020-2025 annual rate of reduction in the USA of about 2% p.a. continues through to 2030 (i.e. a reduction of 37% in 2030 relative to 2005) and the third assumption is that China exhibits a noticeable “glide path” towards a 2030 peak, rather than extreme growth that comes to a shuddering halt. At least for energy emissions, the picture looks something like the one below, but in the language of convergence, i.e. emissions per capita.

Emissions per capita USA and China

What becomes apparent is that the USA and China appear to have adopted a “Contraction and Convergence” approach, with a goal of around 10 tonnes CO2 per capita for 2030, at least for energy related emissions. For China this means emissions of some 14.5 billion tpa in 2030, compared with the latest IEA number for 2012 of 8.3 billion tonnes, so a 75% increase over 2012 or 166% increase over 2005. It also has China peaking at a level of CO2 emissions similar to Europe when it was more industrial, rather than ramping up to the current level of say, the USA or Australia (both ~16 tonnes). By comparison, Korea currently has energy CO2/capita emissions of ~12 tonnes, so China peaking at 10 is some 17% below that.

If the USA and China stayed in lockstep after 2030 with the same reduction pathway that plays out in the USA over the period 2020-2030, that might mean 6.6 tonnes CO2 per capita by 2040, or 9.5 billion tpa for China, which is still slightly higher than the current level.

With the USA (at a Federal level) going down the regulatory route instead, the Australian Prime Minister touring the world arguing against it and the UNFCCC struggling to talk about it, perhaps it is time to revisit the case for carbon pricing. Economists have argued the case for carbon pricing for over two decades and in a recent post I put forward my own reasons why the climate issue doesn’t get solved without one. Remember this;

Climate formula with carbon price (words)

Yet the policy world seems to be struggling to implement carbon pricing and more importantly, getting it to stick and remain effective. Part of the reason for this is a concern by business that it will somehow penalize them, prejudice them competitively or distort their markets. Of course there will be an impact, that’s the whole point, but nevertheless the business community should still embrace this approach to dealing with emissions. Here are the top ten reasons why;

Top Ten

  1. Action on climate in some form or other is an inconvenient but unavoidable inevitability. Business and  industry doesn’t really want direct, standards based regulation. These can be difficult to deal with, offer limited flexibility for compliance and may be very costly to implement for some legacy facilities.
  2. Carbon pricing, either through taxation or cap and trade offers broad compliance flexibility and provides the option for particular facilities to avoid the need for immediate capital investment (but still comply with the requirement).
  3. Carbon pricing offers technology neutrality. Business and industry is free to choose its path forward rather than being forced down a particular route or having market share removed by decree.
  4. Pricing systems offer the government flexibility to address issues such as cross border competition and carbon leakage (e.g. tax rebates or free allocation of allowances). There is a good history around this issue in the EU, with trade exposed industries receiving a large proportion of their allocation for free.
  5. Carbon pricing is transparent and can be passed through the supply chain, either up to the resource holder or down to the end user.
  6. A well implemented carbon pricing system ensures even (economic) distribution of the mitigation burden across the economy. This is important and often forgotten. Regulatory approaches are typically opaque when it comes to the cost of implementation, such that the burden on a particular sector may be far greater than initially recognized. A carbon trading system avoids such distortions by allowing a particular sector to buy allowances instead of taking expensive (for them) mitigation actions.
  7. Carbon pricing offers the lowest cost pathway for compliance across the economy, which also minimizes the burden on industry.
  8. Carbon pricing allows the fossil fuel industry to develop carbon capture and storage, a societal “must have” over the longer term if the climate issue is going to be fully resolved. Further, as the carbon pricing system is bringing in new revenue to government (e.g. through the sale of allowances), the opportunity exists to utilize this to support the early stage development of technologies such as CCS.
  9. Carbon pricing encourages fuel switching in the power sector in particular, initially from coal to natural gas, but then to zero carbon alternatives such as wind, solar and nuclear.
  10. And the most important reason;

It’s the smart business based approach to a really tough problem and actually delivers on the environmental objective.

The EU ETS isn’t out of trouble just yet

  • Comments Off

On January 22nd the EU Commission launched its White Paper which lays out the major components of its energy and climate policy through to 2030. This is the first major step in what could well be a lengthy debate and parliamentary process before a new package of measures is finally agreed. The Commission has proposed a 40% EU wide greenhouse gas reduction target for the year 2030, an EU wide target of 27% renewable energy by the same year and a supply side mechanism to adjust the overall number of allowances in circulation within the EU ETS.

The latter component is clear recognition by the Commission that the ETS has been awash in allowances for some time now and with a price of just a few Euros is doing nothing to drive emissions management across the EU. There are multiple reasons for the situation the ETS currently finds itself in, but one major contributor has been overall energy policy design in the EU. This has imposed renewable energy targets to the extent that further emission reductions under the ETS are not required once the former have been met. Hence the near zero CO2 price. There are two parts to this particular story – the first is the overall level of the renewable energy target and the second is the reality that transport (oil) and commercial / residential (natural gas) sectors hardly contribute to this, so it forces a much higher renewable energy penetration in the power sector, which is under the ETS.

But with a 2030 reduction target of 40% and a new renewable energy goal of 27%, is the problem now remedied?

This of course depends on how the renewable energy target is met. Importantly, it will not be imposed on Member States as it was in the period to 2020, but is only binding at EU level. This could mean that the Commission expects to be at 27% renewables based on the impact of policies such as the ETS, rather than requiring that Member States guarantee a certain level of renewable energy use and therefore effectively forcing them to enact policies to deliver such goals. But many Member States are likely to continue their support of renewable energy and may force it into the overall energy mix right through to 2030.

The worst case outcome for the ETS would be one that sees the whole 27% renewable energy goal met with explicit policies at Member State level. The chart below shows this – note that this is a simple model of the EU for illustrative purposes. Assume that at the end of 2012 EU power generation and industry sector emissions are at 2000 million tonnes CO2. By 2020, with a 1.74% annual reduction under the ETS, they need to be at ~1730 million tonnes. But with renewable energy being forced into the power generation system (although not quite reaching the 20% across the EU) and the EU easily meeting its overall 20% CO2 goal, sector emissions are below the ETS cap, which implies nothing else need be done, hence the low CO2 price. Projecting this out to 2030 with the proposed 2.2% annual reduction and meeting the 27% renewable energy goal across the EU energy system, shows that sector emissions are only slightly above the cap (about 50 million tonnes), which again implies a low to modest CO2 price. Assume further that a CCS programme is actually running and delivering 50 mtpa storage (through direct incentives) and no further action is required – so a zero CO2 price once again! The model also assumes about 30% growth in electricity generation from 2012 to 2030.

 EU ETS RET impact to 2030

This very simple model doesn’t account for the large allowance surplus that exists in 2012 (> 1 billion allowances), which would therefore be unlikely to vanish through normal growth in electricity demand, industrial production and so on. This makes it imperative that the EU also implements the supply side mechanism within the ETS, which would then remove much of the surplus through the early 2020s. Ideally, implementation of this should be immediate and also with immediate effect, rather than waiting until post 2020.

Should Member States not implement specific renewable energy policies and the supply side mechanism is active and functioning, we might just have an ETS that actually drives change in the large emitters sector, but there are two big “ifs” here. Otherwise, expect continued price weakness and probably a higher overall cost of energy as a result.

As the EU Commission gears up to release its 2030 Energy and Climate White Paper in Davos week, there is considerable discussion regarding the emissions reduction target that will be recommended. Historically the EU has been keen on multiple targets, but in recent years this has backfired, with conflicting goals and multiple policy instruments leading to a weak carbon market and a lack of investment in one critical climate technology in particular, carbon capture and storage (CCS).

For the period 2020-2030, it is hoped that the EU will retreat on the number of targets and focus instead on a single greenhouse gas target that then becomes the main driver of change in the energy system. Such an approach could help restore the EU ETS and ultimately deliver the key carbon emissions goal at a lower overall cost, therefore also helping restore some EU positioning in terms of international competitiveness.

Most commentators are expecting the GHG target to be in the range of 35 to 40% from a 1990 baseline (vs. 20% for 2020), but there is very little discussion on how that target might be structured. There are two basic approaches;

  1.  Emissions must meet a particular goal in a given year.
  2. Cumulative emissions over a period of time must be below the baseline year on an average basis.

While a single statement such as “Emissions in 2020 must be 20% below 1990” is often used to cover both these cases, the goals are very different. This is a critical consideration as the EU sets out its position for 2030, but perhaps more importantly as future goals are tabled for the UNFCCC in Q1 2015.

The UNFCCC has, to date, monitored and reported on national objectives through the Kyoto Protocol, which is based on the second approach given above, i.e., cumulative emissions. In the Doha Amendment to the Kyoto Protocol, the EU commitment for the period 2013-2020 is a reduction of 20% below 1990. This is because the Kyoto Protocol is based on allowances (Assigned Amount Units or AAUs) and that these must be surrendered for each tonne emitted over the period. This is also how the atmosphere sees CO2 emissions – cumulatively. Every tonne matters as CO2 accumulates in the atmosphere over time. It doesn’t matter at all what the emissions are in a given year, only that the cumulative amount over time is kept below a certain amount. The EU ETS works in the same way – every tonne counts.

However, as if to confuse, the Doha Amendment also gives the EU Copenhagen pledge of a 20% (or 30% under certain conditions) reduction in greenhouse gas emissions by 2020 as a percentage of the reference year, 1990. In the particular case of the EU, due to the expectation of relatively flat emissions over the period 2013 to 2020, these two goals are very similar, such that the difference issue hasn’t really seen the light of day. Further to this, the Kyoto Protocol allows for carryover of AAUs from 2008-2012 into the 2013-2020 period, so the difference is further dampened. But when it comes to 2030, big differences could show up (see chart below).

 Eu Emissions Goal 2030

 In the case of a 35% target (for example), the brown line shows a pathway to this as a fixed goal in 2030, but equally any pathway would be okay as long as the emissions are 35% below 1990 levels in 2030. But on a cumulative emissions basis, assuming a linear reduction, this is only a 28% reduction for the period 2021 to 2030.

The green line equates to a 35% cumulative emissions reduction for the same period, but in the year 2030 a reduction of about 47% is actually needed to achieve this, a much more ambitious requirement then a simple 2030 goal.

Exactly what the EU says on January 22nd remains to be seen, with considerations such as the high level number itself and domestic vs. international action being the main discussion points. But the big difference might just lie in the eventual wording (“by 2030” or “through to 2030”) and the need to table commitments with the UNFCCC at some point, particularly if the latter still works on a cumulative basis after a global agreement is reached.

What to make of 2013?

It’s difficult to sum up 2013 from a climate standpoint, other than to note that it was a year of contrast and just a little irony. Overall progress in actually dealing with the issue of global emissions made some minor gains, although there were a few setbacks of note along the way as well.

  • The IPCC released the climate science part of their 5th Assessment Report and that managed to keep the media interested for about a day, after which it was back to issues such as health care, economic growth, Euro-problems and assorted regional conflicts. Importantly, the report introduced into the mainstream the much more challenging model for global emissions, which recognizes that it is the long term accumulation that is important, rather than emissions in any particular year.
  • The global surface temperature trend remained stubbornly flat, despite every indication that the heat imbalance due to increasing amounts of CO2 in the atmosphere remains in place and therefore warming the atmosphere / ice / ocean system somewhere, although where exactly remained unclear. The lack of a clear short term trend became a key piece of evidence for those that argue there is no issue with changing the concentration of key components of the atmosphere, which further challenged the climate science community to provide some answers.
  • The UNFCCC continued to put a brave face on negotiations that are being seriously challenged for pace by most of the worlds declining glaciers while the world’s largest emitter, China, often thought of as blocking progress at the international level kicked off a number of carbon pricing trial systems in various parts of the country.
  • Australia elected a government that proudly announced on its first day in office that the carbon pricing system which was finally in place and operating after eight years of arguing would be dismantled, only to be confronted by the fact that the country sweltered under the hottest annual conditions ever recorded in that part of the world.
  • Several very unusual global weather extremes were reported, including what may be the most powerful ever storm to make landfall, yet there was a distinct lack of desire by scientists and commentators to attribute anything to the rising level of CO2 emissions in the atmosphere, except perhaps for the UNFCCC negotiator from the Philippines who went on a brief hunger strike in response to devastation that hit parts of his country.
  • The EU carbon price remained in the doldrums for the entire year, although did show a few signs of life as the Commission, Parliament and various Member States teased, tempted and taunted us with the prospect of action to correct the ETS and set it back on track. In the end, the “backloading” proposal was passed by the Parliament and will likely be adopted and implemented, but the test will be whether or not the Commission now has the backbone to propose and unconditionally support the necessary long term measures to see the ETS through to 2030 as the main driver of change.
  • For the first time that I had seen, a book was released that finally got to grips with the emissions issue, yet somewhat alarmingly failed to find any clear route out of the dilemma we collectively find ourselves in. “The Burning Question”, by Mike Berners-Lee and Duncan Clarke recognized how difficult the emissions challenge has become and questioned those who trivialize the issue by arguing that more renewable energy and better efficiency is all that is needed to solve the problem. Clearly a book for those who designed the hallway posters [Link] at COP19 in Warsaw to read. Closer to home, new Shell Scenarios released in March [Link] 2013 did chart a pathway out of the emissions corner that Mike and Duncan painted themselves into, but the much discussed 2°C wasn’t quite at the end of it.
  • The IEA put climate change back in the headlines of their World Energy Outlook, with a special supplement released in June outlining a number of critical steps that need to be taken to keep the 2°C door open. Unfortunately they hadn’t taken the time to read “The Burning Question” and consequently positioned enhanced energy efficiency as a key step to take over this decade.
  • In North America both the US and Canadian Federal governments continued to head towards a regulatory approach to managing emissions, while States and Provinces respectively continued to push for carbon pricing mechanisms. California and Quebec linked their cap and trade systems to create a first cross border link in the region.
  • The World Bank Partnership for Market Readiness continued its mission of preparing countries for carbon markets and carbon pricing, with numerous “works in progress” to show for the efforts put in to date. But the switch from early trials and learning by doing phases to robust carbon trading platforms underpinning vibrant markets remains elusive.

 These were all important steps, particularly those that tried to broaden or strengthen the role of carbon pricing. On that particular issue, 2013 saw both positive and negative developments, with progress best described as “baby steps” rather than anything substantial. With a change in the European Parliament, mid-term elections in the US and Australia in the process of unwinding, it is difficult to see where the big carbon pricing story in 2014 will come from. Perhaps the tinges of orange (see below) now beginning to appear in South America will flourish and green with COP20 being held in that region towards the end of the year.

 Slide4

Slide3

Slide2

 

Slide1

A rewind back to 2007 reveals an EU Parliament that was very keen on carbon capture and storage (CCS) and gave it tremendous support through the CCS Directive and the NER300 financing mechanism. Five years on and for all the reasons discussed in recent posts, only the UK looks likely to see any near term CCS development and this is entirely due to its own additional policy development.

In March 2007, the Presidency Conclusions of the Brussels European Council stated;

 Aware of the huge possible global benefits of a sustainable use of fossil fuels, the European Council:

    • underlines the importance of substantial improvements in generation efficiency and clean fossil fuel technologies;
    • urges Member States and the Commission to work towards strengthening R & D and developing the necessary technical, economic and regulatory framework to bring environmentally safe carbon capture and sequestration (CCS) to deployment with new fossil-fuel power plants, if possible by 2020;
    • welcomes the Commission’s intention to establish a mechanism to stimulate the construction and operation by 2015 of up to 12 demonstration plants of sustainable fossil fuel technologies in commercial power generation.

CCS couldn’t have had a much harder push out of the starting blocks, yet none of this project activity has happened and CCS is virtually at a standstill in the EU. This has led the EU Parliament to look more closely at the issue and in the very near future we should see the Environment Committee release a report on CCS. In the meantime the Committee on Industry, Research and Energy (ITRE) has posted a short draft opinion on CCS on the EU Parliament website. This may give some early insight into the likely direction of the more critical Environment Committee report. Key findings from ITRE are as follows;

    • Failing to include CCS within a long-term energy strategy will severely hamper national, Union and global efforts to address climate change;
    • Believes that the EU’s mandatory renewable target has undermined investment in CCS, and calls, therefore, for a technology-neutral approach to the Union’s 2030 energy goals, in line with Article 194(2) of the TFEU, in order to create a level playing field and ensure effective competition amongst varying low-carbon energy technologies;
    • Calls on the Commission and the Member States to address the main barriers to the deployment of CCS, such as the granting of permits and funding, the establishment of a CCS skills base and the development and testing of technologies for effective capture, transport and storage;
    • Believes that incentives and policy measures should target both CCS demonstration as well as subsequent longer-term operational projects and must provide greater certainty for private sector investment; believes, furthermore, that incentives and measures should be split efficiently both within the power-generation sector and CCS within industrial production processes;
    • Considers that the low carbon price delivered through the EU’s Emissions Trading Scheme (ETS), and subsequent revenues generated from the sale of allowances under the New Entrants’ Reserve of the ETS (NER300), has failed to deliver an attractive business case for early long-term private sector investment in CCS;

This is all solid stuff and it would appear that ITRE have got to grips with both the important role that CCS must play and the challenges that CCS faces to deploy. Perhaps one surprise is the reference to Article 194(2) of the Treaty of the Functioning of the European Union (TFEU). It is difficult to see how this particular part of the treaty actually supports the need for CCS. Rather, it tends to support the set of actions that have contributed to the problems that CCS is having, namely the focus on renewable energy.

ENERGY

Article 194

  • In the context of the establishment and functioning of the internal market and with regard for the need to preserve and improve the environment, Union policy on energy shall aim, in a spirit of solidarity between Member States, to:
    •  ensure the functioning of the energy market;
    •  ensure security of energy supply in the Union;
    •  promote energy efficiency and energy saving and the development of new and renewable forms of energy; and
    • promote the interconnection of energy networks. 
  • Without prejudice to the application of other provisions of the Treaties, the European Parliament and the Council, acting in accordance with the ordinary legislative procedure, shall establish the measures necessary to achieve the objectives in paragraph 1. Such measures shall be adopted after consultation of the Economic and Social Committee and the Committee of the Regions. Such measures shall not affect a Member State’s right to determine the conditions for exploiting its energy resources, its choice between different energy sources and the general structure of its energy supply, without prejudice to Article 192(2)(c).  

Many will argue that support for renewable energy is the right approach to address climate change, but as I have discussed in numerous posts, it’s not quite that simple. There is little doubt that renewable energy is part of our future and in the next century it may well be the major component, if not all, of our energy system. But in the meantime we are using fossil fuels to power pretty much everything and that is going to take a century to change. If we don’t capture the majority of the CO2 associated with that ongoing use (even with it declining throughout the century) then 2°C isn’t achievable, but nor for that matter is 3°C.

The TFEU doesn’t really give much guidance to help solve this, although Article 191 states;

. . . promoting measures at international level to deal with regional or worldwide environmental problems, and in particular combating climate change.

This then comes down to interpretation of the phrase “combating climate change”. A hardnosed analysis of the global emissions  issue leads to the necessity for a CCS strategy, irrespective of any personal views on whether we should or shouldn’t power the world with fossil fuels. The fact is that we currently do and this existing reality won’t change anytime soon.

 

In conjunction with its request for submissions on the 2030 policy framework, the EU Commission posed a series of questions on carbon capture and storage (CCS) to be answered separately. This follows on from the failure of the NER300 policy framework to deliver an EU CCS demonstration programme.

One question within this new consultation is of particular interest in that it opens up the possibility of a dedicated instrument designed specifically for the deployment of CCS. The Commission asked;

Should the Commission propose other means of support or consider other policy measures to pave the road towards early deployment, by:

a.      a support through auctioning recycle or other funding approaches

b.      an Emission Performance Standard

c.       a CCS certificate system

d.      another type of policy measure

One of the leading CCS focused industry / society groups (European Technology Platform for Zero Emission Fossil Fuel Power Plants, or ZEP) responded to this and argued for consideration of a CCS Certificate system should its preferred Feed-in-Tarrif approach not be acceptable. Such a system would require a certain (and annually increasing) amount of CO2 storage for each tonne of CO2 emitted, but the storage could take place in another location with proof of such storage coming in the form of a tradable certificate. But ZEP noted that;

Any system of certificates should be designed in such a way as to avoid any negative interaction with the existing ETS. Measures to ensure this could include making CCSCs fungible with a certain number of EUAs, or retiring EUAs, as CCSCs are supplied into the market.

While a robust carbon market is the preferred approach for driving investment in technologies such as CCS, frustration with price development is leading policy makers and some CCS proponents to consider targeted policies. The ZEP caveat is important in that overlapping policies have been a real problem for the EU ETS. With other polices taking away the need for the carbon price to trigger investment,  higher overall  costs of mitigation result, but at the same time weakening the visible CO2 price.  The same would be true of a CCS policy instrument. However, an EU wide CCS Certificate mechanism which operates for all the same facilities as the ETS could be designed as follows, delivering a first round of CCS projects but working within the ETS to at least mitigate the overlap issue to some extent:

  • For the period 2021-2025, each 100 tonnes of CO2 emitted would require the surrender of 99 EUAs (EU ETS Allowances or equivalent instruments) and 1 CCSC (carbon capture and storage certificate).
  • The CCSCs are tradable instruments and would be granted for each tonne of CO2 stored in the EU from 2015 onwards. This would give the EU some lead time to build up a modest bank of CCSCs.
  • From 2026 onwards, the CCSC requirement would increase by 1 in 100 each year, i.e. by 2030 the minimum compliance requirement for each 100 tonnes of CO2 emitted would be 6 CCSCs and 94 EUAs (or equivalent).
  • A facility that generates CCSCs would be deemed as emitting one tonne of CO2 for each CCSC sold into the market.
  • CCSCs could be banked for future use.
  • The initial 2021-2025 period would require about 20 million CCSCs in each year across the EU, therefore underpinning a number of projects.
  • As a “relief valve” mechanism for the period 2021-2025 only, an EUA could be converted to a CCSA for a fee, for example at the current ETS non-compliance penalty level (€100), with the money being placed in a CCS technology fund for disbursement to CCS projects.
  • Total EU allowance auction / allocation for the period 2020-2030 would be adjusted downwards on the basis of the creation of a certain number of CCSCs.
  • The approach could also inspire the EU to lead the development of an international CCSC at the UNFCCC which could also be used for compliance in the EU.

A CCS Certificate approach has a very modest price impact on the consumer (of electricity). Under an ETS, the marginal cost of compliance is reflected in the cost of everyone’s electricity and this must rise to levels above €50 per tonne before any CCS project activity is firmly triggered. This equates to quite an increase in electricity prices. But the CCSA not only ensures delivery but quickly socializes the cost of CCS, in that each electricity purchaser pays a fraction of the cost of the first CCS facilities. If a CCSC was trading at €80 per tonne of CO2 stored, then in the period 2021-2025 the consumer would see a cost per tonne of CO2 of only 80 € cents, or for coal fired power generation at 900 gms CO2/kWh, a price increase of less than a tenth of a €-cent per kilowatt hour.

So should we opt for CCS Certificates? Although they will deliver CCS, the approach isn’t as economically efficient as the carbon market left to its own devices. But as already noted, carbon markets aren’t being left to their own devices as other policies continually encroach on their turf (e.g. renewable energy targets), which means that CCS may be significantly delayed.

One further thought. Arguably, the increasing requirement to provide CCSAs could continue past 2030 until the ETS is fully replaced later in the century. This would at least align any use of fossil fuels with the long term requirement to store all the resulting CO2.