Archive for the ‘Greenhouse gases’ Category

The release of the IPCC 5th Assessment Report Synthesis document on Sunday was a useful reminder of the wealth of measurements, observations and science behind the reality of the anthropocene era and the impact it is having on global ecosystems. While some may embrace this material as proof of society’s “wicked ways” and others may contest it on the grounds of conspiracy or hoax, the real job at hand is to find a way of dealing with the challenge that is posed. Within the 100+ pages of text of the longer report, two parts in particular highlight the scope of what needs to be done.

Within 1.2.2:

Despite a growing number of climate change mitigation policies, annual GHG emissions grew on average by 1.0 GtCO2eq (2.2%) per year, from 2000 to 2010, compared to 0.4 GtCO2eq (1.3%) per year, from 1970 to 2000. Total anthropogenic GHG emissions from 2000 to 2010 were the highest in human history and reached 49 (±4.5) GtCO2eq yr-1 in 2010.

Within 3.2 and 3.4:

Global mean surface warming is largely determined by cumulative emissions, which are, in turn, linked to emissions over different timescales. Limiting risks across reasons for concern would imply a limit for cumulative emissions of CO2. Such a limit would require that global net emissions of CO2 eventually decrease to zero.

There are multiple mitigation pathways that are likely to limit warming to below 2 °C relative to pre- industrial levels. Limiting warming to 2.5 °C or 3 °C involves similar challenges, but less quickly. These pathways would require substantial emissions reductions over the next few decades, and near zero emissions of CO2 and other long-lived GHGs over by the end of the century.

The IPCC have now fully embraced the cumulative emissions concept and taken it to its logical conclusion; near zero emissions within this century. This wasn’t explicitly mentioned in the 2007 4th Assessment Report, but was only really there by inference in the mitigation scenario charts that extend beyond 2050. Anyway, the reference is very clear this time around.

This represents a formidable task given the other half of the problem statement also shown above; that emissions are rising faster than ever. There is a second uncomfortable truth buried within this paragraph, which is the implication that current mitigation policies aren’t working.

So there we have it in a nutshell;

Emissions are rising faster than ever, current policies to stop this aren’t working, but we need to be at zero in 85 years.

Eighty five years is the lifetime of an individual. It means that someone born today will need to see a radical change in energy production within the course of their life, to the extent that it is constantly changing for all 85 years, not just locally but everywhere in the world. Arguably someone born in England around 1820 saw this as the industrial revolution unfolded and the Victorian era took hold. But someone born in 1930 hasn’t actually seen a fundamental change in the energy system, rather an enormous scaling up of what was starting to become commonplace at the time of their birth.

This is the issue that I explore in my new book and which is tackled in the Shell New Lens Scenarios released last year. Both the scenarios show that this puzzle is solvable, albeit in very different ways and with different policy approaches but with different levels of success. A critical factor in both scenarios is the timing and deployment rates of carbon capture and storage (CCS). The earlier this starts and the faster it scales up, the higher the chance of limiting warming to around  2°C. This is also highlighted in the IPCC Synthesis Report which says in Section 3.4;

Many models could not limit likely warming to below 2 °C over the 21st century relative to pre-industrial levels, if additional mitigation is considerably delayed, or if availability of key technologies, such as bioenergy, CCS, and their combination (BECCS) are limited (high confidence).

CCS is of course dependent on a price for carbon dioxide or in its absence a standard of some description to implement capture and storage. These policies are largely absent today, despite over two decades of effort since the creation of the UNFCCC. There are certainly some major carbon pricing systems in place, but most are delivering only a very weak carbon price signal and none are leading to large scale rollout of CCS or show any signs of doing so in the near future. Rather, the emphasis has been on promoting the use of renewable energy and increasing the efficiency of energy use. Both of these policies will bring about change in the energy system and efficiency measures will almost certainly add value to most, if not all economies, but it is entirely possible that large scale adoption of these measures doesn’t actually cause global CO2 emissions to fall.

The IPCC have also put a cost on this policy failure in Table 3.2, which shows mitigation costs nearly one and a half times greater in a world which does not deploy CCS. This high cost comes about because the only way to resolve the scenario models is to limit economic activity as means of mitigation; CCS rollout prevents that from happening.

Another way of looking at this is to imagine the actual climate change consequences of delaying CCS rollout, since the likelihood of limiting economic activity is very low. A back calculation from the Shell scenarios implies that every year large scale rollout of CCS is delayed, 1 ppm of atmospheric CO2 is added to eventual stabilisation. This comes about from the cumulative nature of the problem. As such, a 30 year delay means accepting an eventual concentration of CO2 that is some 30 ppm higher than it need be which in turn has consequences for impacts such as sea level rise.

The negotiators now preparing to head to Lima for COP20 and then to Paris a year later may well be poring over the pages of data and dozens of graphs in the 5th Assessment Report, but the message is nevertheless a simple one, although requiring some bold steps.

Some energy system home truths

One point of note on the annual calendar of energy events is the release by BP of their Statistical Review of World Energy. The data, all available to download in Excel format, covers the period up to the end of the previous year (i.e. the current data is to the end of 2013) and as such is about 18 months ahead of the equivalent data from the IEA (which is currently up to 2011 but will be updated later this year). Just about anything you might want to know on energy supply, energy consumption, CO2 emissions, fossil fuel reserves etc, is there for the interested user. In recent years BP have updated the tables to include a more comprehensive look at renewable energy as well.

The most recent release by BP was just a couple of weeks ago, so here are a few key energy/climate home truths within it;

Global CO2 emissions just keep on rising: This is hardly a surprise, but given the recent burst of capacity from the renewable energy sector there might be some sign of some levelling off at least. OECD emissions are at least flat now, but non-OECD emissions continue to rise sharply as coal use increases in particular (chart below in millions tonnes CO2 per annum).

Global emissions

 

The global CO2 intensity of energy isn’t budging: This is a bit more surprising given the influx of natural gas into the global economy and the build rate of renewables. But coal continues to surge and quite some nuclear has been shut down in Japan. The chart below shows the OECD intensity falling as renewables take off in Europe and natural gas increases in the USA, but non-OECD intensity offsets this to give a flat picture overall (chart below is in tonnes of CO2 per barrel of oil equivalent).

Global CO2 intensity of energy

 

The annual increase in fossil fuel use far exceeds the increase in renewable energy production: While many will readily quote the annual increase in renewable energy investment or annual increase in renewable energy capacity as evidence of turning the corner, the reality in terms of renewable energy produced is somewhat different. The chart below compares the annual coal increase with global solar and wind increases. For reference, the total fossil fuel increase from 2012-2013 was 183 Mtoe (million tonnes oil equivalent). The whole picture is rather distorted by the global financial crisis, but coal alone is increasing by something like 100-150 Mtoe per annum. At least for the last couple of years solar has been flat at about 7 Mtoe annual increase.

Increase in coal use

Solar and wind are growing rapidly, but the fossil fuel share of global primary energy is high and steady: Both solar and wind are in their early rapid growth phase where double digit annual increases are expected, but as they become material in the energy system at around 1% of global energy production, don’t be surprised to see this start to level off. The chart below has a log scale (otherwise solar and wind are barely discernible) and shows fossil fuel up in the mid 80’s as a percent of the global energy mix.

Energy mix fraction

Even in Germany it is taking a while for solar to make a showing: While solar PV in Germany is having a profound impact on electricity generation on long sunny days in June, the annual story when looking at total energy use is different. Solar has reached about 2% of the mix (i.e. reached materiality) and might even be showing some signs of slowing up and growing at a more linear rate (but a few more years data are needed to see the real trend). Again, this is a log chart.

German solar

 

Thanks to BP for the time and effort they put into this work every year.

A final contribution from Warsaw

As most will have seen from various media reports, delegates to COP 19 in Warsaw continued negotiating the outcome until late Saturday night. The key sticking points were “loss and damage” and the shape of national actions that would ultimately form the foundation of the 2015 deal (for implementation post 2020).

The agreement from the Doha COP (3/CP.18) to create a mechanism for “loss and damage” related to climate change was delivered on, but probably fell far short of what many developing country negotiators were hoping for. Those at the extreme of this may have been interpreting it as a formula to assess the climate component of national reparations from a given event or weather trend and then bill emitters accordingly, but this is not how the problem was addressed by the negotiators in Warsaw. Rather, the Warsaw International Mechanism for Loss and Damage establishes an advisory and information sharing body with an executive committee that must report annually to SBSTA and SBI and make recommendations. At least for now, this issue has been kicked into the long grass, but it will return in 2016 when it is subject to review at COP 22.

As noted, the second major sticking point was over the nature of national mitigation actions post 2020. The agreed text seeks to have these tabled in the next 18 months, i.e. by Q1 2015. Specifically the text says:

To invite all  Parties to initiate or intensify domestic preparations for their intended  nationally determined contributions,  without prejudice to the  legal nature of the contributions, in the context  of adopting a  protocol, another legal instrument or an agreed outcome with legal force under the Convention applicable to all Parties towards achieving the objective of the Convention as set out in its Article 2 and to communicate them well in advance of the twenty-first session of the Conference of the Parties (by the first quarter of 2015 by those  Parties ready to do so) in a  manner that facilitates  the clarity, transparency and understanding of the intended contributions, without prejudice to the legal nature of the contributions;

Reaffirming the mandate agreed in Durban which aims to see all countries treating mitigation similarly, the negotiators landed on the wording “prepare contributions”, rather than some countries being asked for specific reduction targets or commitments and others for appropriate (to their development status) actions. The latter would have been a retreat back towards the strict developed / developing country division of the Kyoto Protocol, so this wording is a positive development in that sense.

But the compromise word of “contribution” has its own issues and is not the same as “commitments”. The two words have very different meanings;

Commitment: the state or quality of being dedicated to a cause, activity, etc., or, an engagement or obligation that restricts freedom of action. 

Contribution: a gift or payment to a common fund or collection (e.g. the part played by a person or thing in bringing about a result or helping something to advance).

What the world has settled on is essentially a voluntary role for nations as this is the essence of a contribution, rather than the obligation that arises from a commitment. Perhaps we all knew this, but it is now becoming clear that nobody has any particular requirement to do anything with regards mitigation. It is certainly looking unlikely that this choice of wording is preparing nations for what is necessary if they are indeed going to achieve the objective of the Convention as set out in Article 2:

. . . . stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. Such a level should be achieved within a time-frame sufficient to allow ecosystems to adapt naturally to climate change, to ensure that food production is not threatened and to enable economic development to proceed in a sustainable manner.

While there is certain to be a long argument at some point about the exact level of stabilization that is necessary, the above statement nevertheless requires that anthropogenic emissions are eventually reduced to about zero (or at least net zero), in that without such a reduction stabilization is not really possible. It is also likely to be the case that this needs to happen during this century so as to avoid an excessive global temperature excursion and therefore dangerous anthropogenic interference with the climate system (the official line here is of course 2°C, which implies net zero emissions rather sooner than the end of this century, but still in the second half).

A further aspect of the intended global agreement is that while it currently lacks any structure, it will seemingly require contributions now that eventually deliver on the needs of the Convention (although the 2015 outcome will probably only cover the period 2020-2030).  In theory and if negotiators followed this line of argument, it would give nations only one variable left to play with in determining said contributions, that being the date at which they intend to reach net zero emissions. Statements of this magnitude hardly fall into the category of voluntary efforts, rather they become national obligations that may well restrict freedom of action in the future, at least at a national level. That sounds very much like a commitment.

It could therefore be argued that the frantic last hours of a long COP that started out with very low expectations have delivered a challenging legal paradox. Of course it will be unraveled by a focus on the word “towards”, in that it implies a 2015 agreement that doesn’t require a statement of zero emissions now, but at least a pathway that eventually gets there. But this is meant to be a global agreement for the long term, not another interim step towards real action. Whether or not the 2015 agreement embraces a concept such as “net zero emissions” remains to be seen, but if it does then it is hard to see that “contributions” will be a robust approach to getting there. If it doesn’t embrace the concept then it won’t be the global agreement the world actually needs, which means that “contributions” will probably do for now but stabilization of greenhouse gases in the atmosphere will continue to remain elusive.

As expected and as had been widely leaked, the IPCC 5th Assessment WG1 Report released last week presented a range of evidence that further underpinned the case for anthropogenic induced warming of the climate system. By contrast with the 4th Assessment Report issued in 2007, the chance of a human link shifted from likely to extremely likely. Pages of supporting evidence were presented. 

But there was another important development since the 2007 report, the concept that cumulative total emissions of CO2 and global mean surface temperature response are approximately linearly related. There was only one reference to cumulative emissions in 2007 and that was simply a means of describing the mitigation challenge we face over this century. The 4th Assessment Report noted that;

Based on current understanding of climate-carbon cycle feedback, model studies suggest that to stabilise at 450 ppm carbon dioxide could require that cumulative emissions over the 21st century be reduced from an average of approximately 670 GtC to approximately 490 GtC.

The 5th Assessment Report takes this much further and devotes considerable attention to the subject. On page 20 of the Summary for Policy Makers, the report states;

  • Cumulative total emissions of CO2 and global mean surface temperature response are approximately linearly related (see Figure SPM.10). Any given level of warming is associated with a range of cumulative CO2 emissions, and therefore, e.g., higher emissions in earlier decades imply lower emissions later.
  • Limiting the warming caused by anthropogenic CO2 emissions alone with a probability of >33%, >50%, and >66% to less than 2°C since the period 1861–188022, will require cumulative CO2 emissions from all anthropogenic sources to stay between 0 and about 1560 GtC, 0 and about 1210 GtC, and 0 and about 1000 GtC since that period respectively. These upper amounts are reduced to about 880 GtC, 840 GtC, and 800 GtC respectively, when accounting for non-CO2 forcings as in RCP2.6. An amount of 531 [446 to 616] GtC, was already emitted by 2011.
  • A lower warming target, or a higher likelihood of remaining below a specific warming target, will require lower cumulative CO2 emissions. Accounting for warming effects of increases in non-CO2 greenhouse gases, reductions in aerosols, or the release of greenhouse gases from permafrost will also lower the cumulative CO2 emissions for a specific warming target.

The report also featured the chart below.

 IPCC Cumulative Carbon

 

This is important in that it clearly introduces into the mainstream the notion that the atmospheric CO2 issue is a stock problem, which brings with it a number of implications for both the energy system and the solution set.

For the energy system, the key issue this raises is that the amount of carbon already in the pipeline for consumption is considerably more than the remaining stock equating to a 2°C temperature anomaly goal. This has been picked up by a variety of organizations, both NGO and financial, and is at the core of the recent discussions on a “carbon bubble”.

But it also points to a critical aspect of finding a solution to the CO2 problem, the use of carbon capture and storage (CCS). I have written a great deal about this in previous postings. Sequestration (or removal of atmospheric carbon) is the only reliable mechanism for managing the stock, which means either increasing the permanent bio stock of carbon through forestry and land use or capturing and storing carbon dioxide geologically (CCS). Unfortunately this doesn’t get much of a mention from the carbon bubble proponents, which is a clear shortfall in their analysis. With the mitigation report coming out from the IPCC in the first half of next year, this WG1 finding may be an important placeholder for a more substantial discussion around sequestration.

One area that is left unaddressed, at least for me, is a better discussion on the role of short lived climate pollutants (SLCP) such as methane, particularly in the context of a stock framework for thinking about the climate issue. Although the IPCC say that the effective stock of CO2 must be reduced to account for the warming impact of SLCP, this isn’t the whole story. The difficulty is that while anthropogenic CO2 stays in the atmosphere for a very long time, gases such as methane do not – they break down to CO2. This means that methane isn’t a stock issue, but a flow issue, i.e. the impact of methane released today is to change the rate of current warming, but not really the peak warming that we will likely see at some point late this century or early next century. Methane emissions at that time will impact peak warming. It also means that the current efforts to reduce methane now could be undermined unless CO2 is also reduced.

So that is my take on this first release of the 5th Assessment Report. Of course there is a wealth of data to work through and understand, but this critical concept of cumulative carbon is one that needs to filter through policy circles. Once the penny drops on this story, we might actually see some real progress in policy making that will make a difference.

Last week PWC released the 2012 version of its “Low carbon economy index”, the fourth edition of a publication that started just prior to the Copenhagen COP. The main message delivered by the publication is a grim one, although hardly surprising, that the much discussed 2°C target is now effectively out of reach.

 We estimate that the world economy now needs to reduce its carbon intensity by 5.1% every year to 2050 to have a fair chance of limiting warming to 2°C above pre-industrial levels. Even to have a reasonable prospect of getting to a 4°C scenario would imply nearly quadrupling the current rate of decarbonisation. The decarbonisation rate required for a 2°C world has not been achieved in a single year since World War 2. The closest the world came to that rate of decarbonisation was during the severe recessions of the late 1970s/early 1980s (4.9% in 1981) and the late 1990s (4.2% in 1999). The expected reduction in emissions resulting from the current economic slowdown has not materialised, partly because of sustained growth in emerging markets.

Even more bad news follows, with an analysis of the various national pledges made following the Copenhagen COP. Not only does the publication make it clear that the cumulative impact of the stated contributions is insufficient for a 2°C pathway, but that many nations appear to be falling short of actually meeting them.

Even more worryingly, with eight years to go, it is questionable whether several of these pledges can be met.

The resurgence of gas in the global energy mix features in the report as an important driver of change, albeit with the concern about long term lock-in. Nevertheless, growth in natural gas production is leading to a real reduction in emissions in some parts of the world, but particularly the United States.

No matter which country or region you look at, progress made is pretty dispiriting. In a table of some 20 key countries, the worst performer in 2011 was Australia, although over the last decade it hasn’t done too badly in terms of its change in carbon intensity. I suspect that is more due to the fact that it didn’t plunge into recession like almost everybody else, so carbon intensity continued to fall as growth remained high. Therein lies a problem with using carbon intensity as the metric – appearances can sometimes be deceiving.

With 2°C pretty much condemned to the history books, the report goes on to look at the increasing risk of a much higher temperature rise over this century. Even the possibility of an excursion to 6°C is mooted. This outlook isn’t too far off the Shell Scramble (2008) scenario which resulted in CO2e levels approaching 1000 ppm by the end of the century and a consequent temperature rise of over 4°C and rising. By contrast, Blueprints saw temperatures beginning to plateau at between 2°C and 3°C.

None of this is good news, particularly given the amount of change that can take place in the global ecosystem as a result of small changes in temperature. Take sea level, for example. Although it could take well over a millennium to reach a new equilibrium level, the end result is incredibly temperature sensitive. We shouldn’t be surprised by this given that sea level was over 100 metres lower than today during the previous ice age, when temperatures were lower by about the amount we are worried they may rise in the future. As indicated below, a shift from 2°C to 2.5°C adds about 10 metres of eventual sea level rise (although not anytime soon).

 

All this raises the question as to what we should or could do, given that 2°C is not feasible. The “numbers guys” at PWC don’t go there and arguing for a higher target is a political non-starter, but at some point the discussion is going to have to happen.

 Based on the work of Allen, Meinshausen et al, which equates a given stock of atmospheric CO2 with long term temperature rise, it is possible to derive a chart which shows, for a given annual reduction until emissions are zero, the impact in terms of expected (midpoint) temperature rise.

For example, starting today, 2°C requires about a 2.5% year on year reduction in emissions – and this is now deemed infeasible by PWC. But if we delay until 2025, the required reduction is over 4% p.a.

Knowing that the world isn’t going to do much until 2020 when a new global agreement is scheduled to kick in, a 2.5°C goal requires about a 1.6% p.a. reduction, assuming action starts immediately. This would mean no new emissions from 2020, plus some 100 very big CCS projects (1 GW power station) starting up each year through the 2020s on existing facilities – and so on. This isn’t very different to the rate at which new coal fired power plants are appearing today, so it is probably feasible from an implementation perspective. Of course keeping all other emissions in check will be a further challenge, but that task could potentially be achieved by aggressive fuel switching and renewable energy deployment, supported by efficiency improvements.

The PWC report is a timely reminder of the situation that we are now in and the ambition that the proposed new global agreement is going to have to aspire to.

  •  Allen, M. R. et al (2009) Warming caused by cumulative carbon emissions towards the trillionth tonne, Nature, 458:1163-1166, which argues that a one trillion tonne release of carbon gives a most likely warming of 2°C, with a likely (one-sigma) uncertainty range of 1.6-2.6°C.
  • Meinshausen, M. et al (2009) Greenhouse gas emission targets for limiting global warming to 2°C, Nature, 458:1158-1162, which argues that a total release of 0.9 (0.71) trillion tonnes of carbon gives a 50% (25%) risk of temperatures exceeding 2°C.
  • Allen, M. R. et al (2009) The Exit Strategy, Nature Reports Climate Change, 3:56-58, which provides a commentary on the implications of the above papers for non-specialists.

 

US emissions continue to fall

If you dig down a few layers through the US State Department website, you will come across a Press Release from February 2010 where the USA pledged to reduce its greenhouse gas emissions.

Press Statement

Todd Stern,  Special Envoy for Climate Change Washington, DC

February 4, 2010

Special Envoy Stern: We are pleased to be among 55 countries – including all of the world’s major economies — that have submitted pledges to limit or reduce their greenhouse gas emissions under the Copenhagen Accord. These countries represent nearly 80% of global emissions. In supporting the Accord, we are taking an important step in the global effort to combat climate change.

In addition to the countries that have submitted targets or actions, a number of others have conveyed their support for the Accord. We urge all countries to join this broad coalition by promptly conveying their support for the Accord to the UNFCCC Secretariat.

The Copenhagen Accord includes important advances on funding, technology, forestry, adaptation and transparency. The United States is committed to working with our partners around the world to make the Accord operational and to continue the effort to build a strong, science-based, global regime to combat the profound threat of climate change.

I have commented on the commitment in previous postings, but just to be reminded of what was said, here is a copy of the letter sent by the US to the UNFCCC. 

Last week the US EIA released the latest greenhouse gas emission figures and they show that the country is well on track to meet this pledge, even though there is no formal program in place to ensure delivery. 

Following the sharp recession led drop, two continuing drivers for the change are the drop in coal emissions as older coal fired power plants close and the fall in automotive emissions due to tougher vehicle efficiency standards and the continuing higher oil price. As expected, natural gas emissions have risen as this fuel replaces coal in power generation, but with less than half the carbon footprint of the coal.

This trend could well continue over the coming years as further coal capacity is closed in response to the combination of EPA air quality regulation, expected greenhouse gas regulation and the growing supply of natural gas. In addition, CAFE standards should ensure further improvements in vehicle efficiency.

My original analysis of this trend produced the following chart. Two years on and we still seem to be at least in the same ballpark.

After two busy weeks, the Durban COP was extended by a full day and then went well into a second, with long nights of negotiation along the way. Eventually a deal emerged which has polarized both the media and blogsphere between being the salvation of mankind or the quick route to runaway warming. In reality it is neither, but if that is the case then where are we?

First the good news. After years of discussion, stalling and negotiation the Clean Development Mechanism (CDM) is now able to accept Carbon Capture and Storage (CCS) projects. This important technology now has the opportunity for global use under a clear set of rules that all countries have sanctioned. Of course there remains the ongoing issue of the low price of CERs, largely driven by the weakness of the EU-ETS, but at least the CDM will continue to exist thanks to a Durban agreement on the continuation of the Kyoto Protocol, albeit with a limited set of players. If nothing else, the “CCS in CDM” agreement puts CCS properly on the radar and hopefully paves the way for implementation through other means, such as via the Green Climate Fund. 

In addition to the move on CCS, the Green Climate Fund and Technology Mechanism both made useful progress. In comparison to expectations going into Durban, the COP could be regarded as something of a success. But these are small steps to take for a two week conference which attracts some 10,000 people (including observers). Of course the real objective is to make a major step forward and agree a way for all parties to begin rapidly reducing emissions.

What then of the agreement in Durban to negotiate a new protocol (or another legal instrument or a legal outcome) by 2015 at the latest, for implementation by 2020? From the perspective of large scale mitigation action involving all the major emitters, this is good news, but given the reality of the rate of increase in the level of CO2 in the atmosphere, the story is really very different.

In a 2009 posting, I discussed the issue of a 2°C objective on the basis of CO2 behaving like a stock pollutant in the atmosphere (Allen et al, Nature, April 2009). For a 50% chance of limiting the global temperature rise to 2°C, the stock of CO2 should not rise above 1 trillion tonnes of carbon (or 3.667 trillion tonnes of CO2). This provides a useful way of assessing the impact of the “Durban Platform for Enhanced Action”. Consider four cases;

  1. The “do nothing” base case which sees emissions continue to rise at the rate of 2% per annum (global emissions increased by 2.5% p.a. over the period 2000 to 2009 – IEA) and accumulate in the atmosphere. This sees the trillionth tonne emitted in 2044 with continued rapid accumulation in the decades following.
  2. A dramatic (but of course hypothetical) deal in Durban which sees global emissions peak immediately and begin to fall at 1.7% p.a., the same rate of decline as currently built into the EU ETS. In this case the trillionth tonne is emitted just after 2100, but emissions are very low by this time and still falling, so the 2°C limit is effectively met.
  3. Business as usual continues until 2020, but the “Durban Platform” acts aggressively on global emissions post-2020, with emissions peaking in that year and then falling. To achieve the same outcome as Case 2 the annual rate of decline must now be 3% p.a.
  4. Business as usual continues until 2020, with the “Durban Platform” resulting in a global plateau in emissions from 2020 to 2030, then falling after that. Now the rate of decline must be over 4.5% p.a. to achieve the same outcome as Case 2. 

While the agreement to start negotiating again with a view towards implementation of a global plan from 2015/2020 must be seen as a positive development, the time lag now built into the process must equally be a cause for concern. There is nothing easy about emissions and the future, but starting the job today is an essential requirement for meeting the 2°C goal – this was also the clear message from the IEA (International Energy Agency) going into COP 17. A theoretical global decline of 1.7% p.a. is at least still within the bounds of technical (but clearly not political)plausibility, although only just, but arguably a reduction rate of 3% or 4.5% is beyond an achievable outcome. Even the financial crisis only managed to deliver a 1.4% reduction from 2008 to 2009 before emissions bounced back in 2010. A 3% p.a. decline from 2020 requires more than a billion tonnes per annum of reduction – or the startup of at least 130 very large CCS facilities that year and then each year after that. A 4.5% p.a. decline is considerably more difficult to achieve.

The above cases 3 and 4 which both represent a robust deal coming from the “Durban Platform” are also very optimistic given the track record of the UNFCCC negotiations and perhaps of greater concern, the track record of national implementation of agreements made.

Nevertheless, Durban may well be seen as a landmark COP and it may just mark the point at which attitudes change, but the shape of the outcome also makes the challenge ahead that much greater.

Last week I went to the London showing of Vice President Al Gore’s Climate Reality Project – it was one of 24 consecutive presentations held around the world on the 15th of September. There was a lot to look forward to in attending this, particularly to see how Mr Gore would respond to the troubling attacks on the science currently seen in some political debates and the continued challenge to carbon pricing policy in countries like Australia. Some have argued that we are at a crossroads in climate policy, with richer nations seemingly deciding that they will wing it and let the physics play out over the coming century (for a thoughtful piece on this click here).

 From a personal perspective and for context, I found An Inconvenient Truth to be a remarkable film and I was very pleased to be able to attend an Al Gore training session myself – and one that he personally delivered for a day in Cambridge, England. I have even used some of the material in my own presentations, which of course was the quid pro quo for attending the training. But it is good material and although I differ with Mr Gore on the way he interpreted some of the paleoclimate record, his overall message was solid.

This time though, I was disappointed and I am even more disappointed that this was the case. The core section of the presentation focused on extreme weather events and pretty much blamed them all on the long term change in the climate that is seemingly underway. By chance that same afternoon, I had listened in to an MIT web cast on exactly the same subject – extreme weather events. For me the contrast between the two was a concern. Although both presentations explained the observable shifts taking place in the global hydrological cycle and both showed the disturbing trend in measurements such as atmospheric humidity, Mr Gore then went straight from that to the remarkable cascade of disasters that have unfolded over the past 12 months. MIT did not, nor would their presenter be drawn on it even when pressed on the subject by one of the listeners. Rather, MIT focused on the rising global temperature and humidity and declining ice coverage and showed real measurements which illustrated how warmer ocean surface temperatures might lead to more intense hurricane activity.

Included within the Climate Reality slideshow were the Pakistan floods, the Australian floods and bush fires, the US floods from North Dakota to Nashville and down the Mississippi / Missouri River system, mud slides in Colombia and the Texas drought. These have been (and continue to be) awful events and they are illustrative of some of the possible impacts of a warmer, moister atmosphere, but they are not necessarily caused by this. In fact, 1974 also suffered a string of such disasters and both it and 2010/11 had another thing in common, an intense La Nina (1973-1975) in the Pacific. Record Australian, Brazilian, Colombian and Bangladeshi floods all featured in 1974, together with a super-outbreak of tornadoes in the United States. Somalia suffered an intense drought in that period as did the central USSR.

I don’t want to undermine the efforts of Mr Gore, but only point out that he is going to have to do better to communicate his important message. In this era of soundbites and media savvy politicians it will be all too easy to take shots at this new work. The much longer but more rigorous MIT approach is where we should be, despite the huge challenge of successfully communicating uncertainty and atmospheric chemistry to a global audience. Let’s not forget that a much more complex atmospheric chemistry issue (CFCs and the ozone layer) was communicated in the 1980’s.

In the last section of the presentation Mr Gore poured scorn on those who have challenged the science. This included special interest lobby groups (oil companies among them) and a number of well known political figures. I can’t agree with the statements made by some leading politicians who dispute the work of the scientific community, but direct attack isn’t the answer here, despite the huge temptation to do so. Nor is it the reality that all industry lobby groups are seeking to undermine the science. While some groups have been less than helpful and others have just displayed ignorance, many, many business groups have positively contributed to the development of a way forward. In the US, USCAP did a remarkable job in helping craft and then supporting the Waxman-Markey bill. Globally, some 150 companies (many of which are Fortune 500) belong to the International Emissions Trading Association (IETA) and actively press for cap-and-trade approaches at national and regional level. Similar work is done in the WBCSD, the UK and EU Corporate Leaders Groups on Climate Change, the European Round Table of Industrialists, just to name a few. Sure, the businesses in these groups might fight their corner and will have no qualms about challenging issues such as allowance allocation in trading systems, but that is in the nature of reaching agreement.

The Climate Reality Project is an important next step, but at the moment it feels like a somewhat inconvenient one. The challenge back is the right thing to do, but the debate needs to be moved to a higher level, out of the trenches that currently seem to be occupied by many. This is an issue that will be around for the next 100 years and possibly much longer. We will all be too exhausted to even think about a true response if the current level of rancor is simply maintained.

The USA on target? Yes, according to the Administration!

  • Comments Off

It has been an interesting week for climate change news, with the IPCC releasing its full report on renewable energy, the European Commission moving ahead with energy efficiency legislation, very little happening at the UNFCCC talks in Bonn and of course the battle over carbon pricing continuing in Australia. In scanning the Australian media I spotted an insightful interview with the United States Ambassador to Australia. In the interview, Ambassador Bleich argues that the USA is on track to meet its 2020 greenhouse gas target (17% below 2005 levels) because of the breadth of activity across the economy in transforming the energy system.

 THE US ambassador to Australia says America is pulling its weight in international efforts to reduce greenhouse emissions, contrary to suggestions a carbon tax would see Australia acting ”ahead of the rest of the world”. In an interview with the (Sydney Morning) Herald, Ambassador Jeff Bleich said the idea that America was lagging was “not accurate at all” and it was “absolutely realistic” to believe the US would meet its target of a 17 per cent reduction in emissions by 2020, based on 2005 levels.

“The US is taking dramatic action, if you look at the largest investment in history in energy transition, the major regulatory reforms for the largest emitters and consumers of energy, the focus on the dirtiest emission technologies used by power plants and vehicles … we are moving on a very aggressive regulatory effort,” he said. “… there’s absolutely no question the United States has been doing a tremendous amount over the last two years … and going forward the President has said we need to double what we are doing because that is good for our economy.”

The Californian emissions trading scheme, due to start next year, could also have “dramatic effects”, for that state and potentially on a broader scheme for the western states of the US and Canada, he said. Although President Obama had been clear he preferred a national cap and trade scheme, when that was not successful in Congress he had moved to different approaches. These had not put the United States at a competitive disadvantage with major trading partners because China, Europe and others were taking action as well, nor had US companies in Australia expressed concern that a carbon tax would disadvantage their business here.

The Australian Industry Greenhouse Network has cited figures from the US showing that because of the impact of the financial crisis, US emissions were not scheduled to return to 2007 levels until 2027, suggesting that the US emissions reduction target was now easier and no longer required an “equivalent effort” to Australia’s emissions reduction target of a 5 per cent cut based on 2000 levels.

Ambassador Bleich said that while the financial crisis may have had an impact on emissions, the measures being taken by the administration were also having a real impact.

The recent Productivity Commission report said the US was spending a little less than Australia on reducing emissions as a percentage of GDP and was abating less from its electricity sector, but Ambassador Bleich said the report had provided more evidence that major emitters were all acting.

I have discussed this before, but it is worthy of a revisit. There is no question that US emissions have fallen in part as a result of the recession, but the increasing availability of natural gas and generally higher energy prices causing consumers to think about energy use are also having an impact. Furthermore, a variety of renewable energy programmes (but mainly wind) are filling in capacity gaps in the power market and the Bush Administration bio-fuel mandates are having an impact in the road transport sector.

I recently revised my own analysis of US emissions for a conference and developed the following summary picture:

In terms of progress from today, the two big ticket items remain natural gas substitution for coal and the impact of CAFE standards in the transport sector. Emission and water regulation (not including GHGs) under the Environmental Protection Agency (EPA) could result in a substantial portion of US coal fired power generation shut down by 2020. The displacement of up to 70 GW of coal fired generation capacity would require about 7.8 Bcf/day of natural gas or some 4 years of production increase, assuming the current production trend is maintained. Even if the annual increase was half the current trend, sufficient additional production would be available for such large scale substitution over the period 2012-2020.

The real unknown of course is the possibility of an emissions upswing over this decade as the economy shifts back into full gear.

US success in meeting the 2020 target could profoundly affect the broader discussions on reducing CO2 emissions, both in the USA and more widely. After 2020 we might we see more acceptance of CO2 measures on the basis that emissions had fallen, it hadn’t damaged the economy or society, so “we can then do more”. But it could be a double edged sword, with complacency creeping in on the back of the argument that the market has responded and CO2 is taking care of itself, so there is no need to worry about it.

Food for thought

  • Comments Off

Sitting on a beach in Italy with my family leads to all sorts of bizarre conversational directions. My 15 year old son and I were filling some time by challenging each other to estimate things based on scant information and assumptions. Having just figured out that the volume of the ocean was some 1.4×10^21 litres (we were surprisingly close as it turned out) we turned our attention to the number of boxes of Cornflakes sold in the UK each week (yes, this is going somewhere).

Assuming a population of some 60 million of whom 60% eat breakfast cereal and of those 10% eat Cornflakes, we ended up with 3.6 million servings a day. If an average box lasts 10 days then that comes to some 2.5 million boxes per week.

The next challenge was to estimate how much energy is used in just moving Cornflakes from the point of production to the point of purchase in the UK. We started by assuming that an average distribution truck (accounting for both big supermarket and smaller shop distribution) would have a capacity of 4 x 2 x 2 metres or 16 m3. If a box is 40 x 25 x 7 cms or 7000 cm3 then a truck could carry about 2000 boxes. That means 1200 truck loads of Cornflakes per week.

We then assumed that on average a purchase point is no more than 100 miles from a production point so that the average box of Cornflakes travels 50 miles at a minimum (I suspect it may be somewhat higher than this). If an average truck gets 10 miles per gallon then moving Cornflakes in the UK consumes 6000 gallons of fuel per week or about 150 barrels of oil (about 10p for each customer per year). That adds up to some 8000 barrels per annum which in turn adds nearly 3000 tonnes of CO2 to the atmosphere.

None of this may sound much, but don’t forget that we are just moving Cornflakes (no other cereal) from the point of production to the point of purchase in the UK only ! One tiny aspect of our lives.

Food for thought !