Archive for the ‘Japan’ Category

“Show me the money” or CO2 mitigation at COP 19 ??

  • Comments Off

After the first week of the Warsaw COP, an observer could be excused for wondering what exactly the thousands of delegates meeting here were actually discussing. The closest the assembled negotiators, NGOs, business people and UN staff came to seriously talking about CO2 mitigation was when Japan announced its new 2020 target, an increase of 3% in emissions vs. 1990 (but positioned as a decrease of 3.8% vs. 2005 emissions). The change in target by Japan is a consequence of their decision to stop all use of nuclear power following the Fukushima disaster.

Curiously, the Japanese announcement was criticized by China, with their climate negotiator Su Wei saying: “I have no way of describing my dismay” about the revised target. The European Union also expressed disappointment and said it expected all nations to stick to promised cuts as part of efforts to halt global warming. Christiana Figueres, the Executive Secretary of the UNFCCC told Reuters that, “It is regrettable.” Somewhat predictably, she forecast that Japan’s planned investments in energy efficiency and renewable power would prove that the target could be toughened.

The Japanese decision sent one other major ripple through the football stadium holding the COP, that being the realization that national pledges are wide open to correction and change as circumstances dictate. Given that “pledge and review” is the likely foundation of the global deal that negotiators are aiming for in 2015, the Japanese move brings into question if such an approach has any legitimacy at all. Had the original Japanese target been underpinned by carbon market instruments with the robustness that we expect of financial markets, they might have felt compelled to buy the difference, which would have at least financed equivalent compensating mitigation actions in other parts of the world (although that being said, Canada took no such action when it failed to meet its goals under the Kyoto Protocol, it just rescinded its ratification instead).

But Japan and CO2 was a momentary distraction from the real discussion, money. This has appeared in a variety of forms and is endemic within the process. There is endless questioning about the $100 billion pledge made in Copenhagen;

In the context of meaningful mitigation actions and transparency on implementation, developed countries commit to a goal of mobilizing jointly USD 100 billion dollars a year by 2020 to address the needs of developing countries.

. . . with the most often repeated phrase from many countries being akin to “Show me the money”. Of course, the intention of the Copenhagen Accord was never to have $100 billion per annum deposited in the Green Climate Fund by Annex 1 countries, but to develop approaches which would see at least $100 billion per annum in mitigation and adaptation investment flow to developing countries, leveraged by instruments such as the Green Climate Fund. Unfortunately this interpretation of the pledge is largely ignored.

show-me-the-money-38mm 

Money also rears its head in the Loss and Damage discussion where agreement was reached in the dying hours of the Doha COP to agree a mechanism for this in Warsaw. The horrors appearing across the media of the aftermath of Typhoon Haiyan in the Philippines has of course focused minds on this discussion. In their various opportunities to speak in the plenary sessions, many nations called for the Loss and Damage issue to be rapidly progressed in Warsaw. 

Even within the discussions on technology transfer there is a renewed call from some nations for the opening up of patents (money) on a variety of “climate friendly” technologies.

The other half of any COP is the side event programme and here CO2 mitigation didn’t get much of an airing either. There were many side events on financing and adaptation and those on energy primarily focused on energy efficiency and renewables, neither of which offer a direct path to measurable and sustained CO2 mitigation. By contrast, the few side events on carbon capture and storage were rather sparsely attended.

The rather sparsely attended but content rich GCCSI event on CCS developments.

The rather sparsely attended but content rich GCCSI event on CCS developments.

 Even the “Green Climate” exhibition in the Palace of Culture was principally focused on energy efficiency in buildings, solar PV and waste management. However, Shell at least kept the CCS flag waving with its novel CCS lift / elevator (something of a virtual ride to 2 kms below the surface where CO2 could be safely stored).

The Shell CCS “lift” in the Palace of Culture and Science in Warsaw.

The Shell CCS “lift” in the Palace of Culture and Science in Warsaw.

So to week 2 of the Warsaw COP, which will likely end in the usual rush to a declaration of some description at the end, although in the very last hours of Week 1 on Saturday night the collected negotiators came away with nothing agreed on FVA and NMM.

Energy impacts after Fukushima

It is hard to make any comment at all after the scenes of destruction that have been filling the airwaves since Friday. But as the immediate disaster starts to move into recovery, then rebuilding, the issue of energy supply in Japan will doubtless rise up the agenda. In a country with limited natural energy sources, security of supply has been the traditional energy source consideration, although more recently this has been augmented with greenhouse gas emission targets. In terms of primary energy demand for electricity production (see chart), data for 2008 from the IEA shows a 3+ way split – the key components being gas, coal and nuclear. Oil products (e.g. fuel oil) are a further important part, followed by much smaller contributions from renewables, waste, biomass and geothermal.

 The nuclear generated electricity comes from 55 operating nuclear plants (including those in Fukushima) for a total of about 51 GW of capacity. With rolling blackouts now underway on Tokyo as a result of the cluster of nuclear plants in the Fukushima area now out of action, it is clear that the grid is very dependent on nuclear power. In the short term all the other generating capacity will have to be maximized to make up for the loss of the Fukushima facilities. The load is likely to fall on coal, fuel oil and natural gas which will further stretch international supplies at a time of high energy prices and disruption to coal supply following the floods in Australia. With 10 GW in the Fukushima area now offline (or 20% of the national nuclear capacity), replacement with LNG would require some 8 million tonnes per annum against a global supply of about 230 million tonnes.

But in the longer term, what if Japan took the decision to phase out nuclear power? I am not proposing that it should or shouldn’t, but sometimes major events can have a profound impact on societal developments going forward. In terms of potential replacements, current technology points to coal and natural gas, although the latter has an advantage in terms of lower CO2 emissions.  Equally, a profound shock such as that experienced in Fukushima could be a catalyst for accelerating the development of solar PV and concentrated solar in Japan.

In 2008 Japan imported about 68 million tonnes of LNG, of which about two thirds was used for electricity production. In the same year electricity production from the nuclear power plants was about 10% less than that produced by natural gas, so replacing that with natural gas would require another 40 million tonnes of LNG imports per annum. By comparison, annual LNG production in Qatar, the world’s largest supplier, is some 80 million tonnes. As already noted, global production is now 230 million tonnes, but it is growing rapidly. For example, the Gorgon project in Australia which is now under construction will produce 15 million tonnes of LNG starting in 2014.

But the impact of Fukushima could be more profound. Arguably nuclear is undergoing something of a renaissance as nations grapple with the challenges of energy supply, diversity of supply and CO2 emissions. According to the World Nuclear Association there is currently more capacity proposed, planned, on order or under construction (609 GW) than is presently in operation (378 GW). Of this, 64 GW is actually under construction with 176 GW on order or planned. Reverting to coal, for example, even with modern efficient facilities, could result in an additional billion or more tonnes per annum of CO2 emissions by the end of this decade if 200 less nuclear plants were constructed than current expectations.

It is early days and emotions remain high, but balancing climate risk against nuclear risk looks certain to feature in the energy discussion for some time to come.

Good News or Bad News

  • Comments Off

Recently Reuters reported that the Japanese government is looking at developing its own version of the Clean Development Mechanism (the offset / project mechanism instrument within the Kyoto Protocol). Japan has been a significant buyer of CERs (Certified Emission Reduction Units) in recent years, both directly and through voluntary agreements with Japanese industry but like many participants in this market has reportedly been frustrated by the bureaucracy of the CDM and the specific requirements placed on a project such that it is eligible. Nevertheless, with Japan and the EU as the principal buyers of CERS, the CDM system will have issued some 1.8 billion CERs by the end of 2012, which in turn equates to about $25 billion in carbon value and certainly more in overall project investment. Whilst the same investment may well have gone to developing countries anyway, it would not have been so focused on low carbon projects such as land-fill methane capture, wind and hydro.

To its credit much has been achieved under the CDM, but it remains an instrument of the Kyoto Protocol and subject to the jurisdiction of the CDM Executive Board (EB) which in turn operates through the Meeting of the Parties to the Kyoto Protocol. Above all else, the CDM has shown that a project mechanism can work and importantly can enable a targeted low carbon investment stream into developing countries. As a result, the idea of an offset / project mechanism of some sort exists in many government’s plans for legislation. But therein lies what is becoming a problem – each government wants a “made at home” solution. The latest incarnation of this is Japan.

Apart from government-to-government AAU transactions (under the Kyoto Protocol), the CER is the pretty much the only single fungible carbon price instrument globally. It can be utilized by all the Kyoto Annex 1 countries for compliance and in some cases that compliance has been cascaded down through the economy such that business trades CERs. This in turn links the carbon price those economies and allows at least some measure of optimization between them, albeit limited today. Optimization in turn means a lower cost of compliance for the economies in question. Multiple, jurisdiction specific offset mechanisms would prevent this from happening. The accreditation of a given project would typically be against one set of rules and therefore the resulting credits could only be used for compliance where those rules originate. Project developers would find the cost of multiple jurisdiction accreditation prohibitive. This means that there would be no linking mechanism between the systems and no opportunity to optimize. The result – a lost opportunity and a higher cost outcome. There will also be additional costs for the governments involved. Establishing the necessary monitoring and accreditation bodies is a complex and expensive task, just look at the CDM EB. Finally, it may be wrong to assume that it will all somehow be easier if done at home – even local solutions will have teething problems and will likely face all of the issues all over again that have been dealt with by the CDM EB.

So whilst it is good news that governments continue to favour market mechanism approaches to emission reductions, it may be bad news if they each try a home grown solution. At a very minimum, a global deal on project mechanism design and implementation, ideally building on but learning from the CDM, would be a solid achievement from the UNFCCC process in Cancun.