Archive for the ‘Renewables’ Category

The UK 5th Carbon Budget

In amongst the excitement created by the Brexit vote, on 30th June 2016 the UK Government met its statutory requirement and announced the details of the 5th Carbon Budget which covers the period 2028-2032. The Government followed the recommendation of the Climate Change Committee and advised that the carbon budget for the 2028–2032 budgetary period is 1,725,000,000 tonnes of carbon dioxide equivalent. This assumes 590 MtCO2e covered by the EU ETS and subject to its carbon price and a nontraded share of 1,135 MtCO2e (excluding international shipping emissions). The overall budget represents a reduction of 56.9% below the 1990 baseline.

The UK is unique in the world with its carbon budget approach. This is the result of far reaching legislation enacted back in 2008 in the form of the Climate Change Act which requires the UK Government to establish a specific carbon budget for successive future periods. To date the UK is on track towards meeting the 2nd Carbon budget, as described in a recently released summary of greenhouse gas emissions which covers the period up to the end of 2014. But the journey has been relatively easy so far. With the continued shift to natural gas and away from coal, the arrival of wind and to a lesser extent solar, the 2008-2009 recession and the higher cost of oil and gas in recent years driving real efficiency and demand reduction, UK emissions have fallen.

UK GHG Emissions to 2014

In 1990 UK CO2 emissions per kWhr of electricity generation were 672 grams, whereas today they are around 450 grams. As a result, emissions from power generation have fallen, even with current electricity demand higher than the 1990 level. By contrast, road transport emissions have remained about flat for 25 years although there has been a marked shift from gasoline to diesel. Another significant reduction has come from industry, but much of this is due to an overall reduction in heavy industry (steel making, refineries), in favour of services (media and finance) and high technology industry (e.g. aerospace).

With a large natural gas base and a diminished heavy industry sector, has the UK now reached an interim floor in terms of national greenhouse gas emissions? While there are still gains to be made in the electricity sector, future progress towards the goals of the 3rd, 4th and 5th Carbon Budgets will require additional action in other parts of the economy.

UK Emissions Progress

The 5th Carbon Budget requires nearly another 200 Mt per annum of reductions across the UK, compared to the 2nd Carbon Budget period that we are currently in. Even with Hinkley Point nuclear and an ambitious renewables programme (which is reported as being off track ), it is unlikely that power generation emissions would fall more than 100 MT per annum. A 200-250 gram per KWh goal by 2030, equivalent to about 50% natural gas and 50% nuclear/renewables would mean a fall of about 70 Mt. There may also be upward pressure on the sector as transport electrifies.

The above implies that the emission reduction focus will have to expand more rapidly into the transport and residential areas in particular. While the residential sector has been an area of action for some time with a focus on boiler efficiency and home insulation, the rate determining step here is turnover in housing stock or at least housing refurbishment, which can be very slow.

UK transport emissions have hardly budged over many years, although there has been some redistribution within the sector. A sharp single step reduction came during the 2008-2009 recession, but that fall has not been continued. Data since the late 2014 price fall in crude oil is not available yet, but that may put upward pressure on transport emissions. Between now and 2030 there is the opportunity for a single turnover of the vehicle fleet, but EV sales are still only very modest in the UK. In March 2016 there were some 67,000 registered plug-in cars in the UK, less than 0.2% of the fleet. During January to March 2016, some 11,750 new ultra low emission vehicles (ULEVs) were registered in the UK. Over the year to the end of March 2016, ULEVs represented 1.0% of all new registrations, compared with 0.8% over the previous year and 0.2% over the year before that.

The 5th Carbon Budget represents a further landmark step for the UK, but it also means a shift in policy emphasis is required in the near term.

Three years ago when Shell released their New Lens Scenarios, the two views of the future looked out far beyond previous scenarios, taking in the period from 2050-2100. This offered the opportunity for both scenarios to explore ways in which the world might reach a point of net-zero carbon dioxide emissions, down from some 40 billion tonnes per annum at the moment. Such an outcome is critically important for the global environment as it means stabilization and then probably some decline in atmospheric carbon dioxide levels, an essential requirement for limiting the current rise in surface temperature.

Net-zero emissions is also a requirement of the Paris Agreement. Article 4 is very clear in that regard, with its call;

“so as to achieve a balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases in the second half of this century. . . “

Energy scenarios typically explore the nearer term and many limit their horizon at 2050, but that isn’t sufficient for seeing truly profound changes in the energy system. These will play out on longer timescales, given the size of the system, the capital and capacity required to turn the system over. Solar energy is a good example. Today, we are in the middle of an apparent boom, but that is founded on years of development and improvement in the underlying technologies, a process that is still underway. Even at current deployment rates, solar still makes up only a small fraction of the global power generation system and electricity only represents 20% of the final energy we actually use. But over many decades, an energy technology such as solar PV may come to dominate the system.

Looking at the emissions issue from the fossil fuel side, even if solar was to dominate, would fossil fuels and the associated emissions of carbon dioxide necessarily decline? Simply building more renewables doesn’t guarantee such an outcome and even a significant reduction in fossil fuel use could still mean a continuing rise in atmospheric carbon dioxide, albeit at a reduced rate. Scenarios help explore such questions and by extending the New Lens Scenarios to 2100, real solutions to reaching net zero emissions present themselves.

The original “New Lens Scenarios” publication from 2013 focussed more on the period through to 2060, but a new publication released by Shell looks specifically at the challenge posed by net zero emissions and explores plausible pathways towards such an outcome using the “New Lens Scenarios” as a backdrop. I have been involved in the development and writing of this publication, which started in earnest only days after the Paris Agreement was adopted. But the material within it comes from the strong base built up over many years through the various Shell scenarios.

The analysis presented sees the energy system doubling in size as global population heads towards 10 billion people. Today we collectively consume about 500 Exajoules of energy; this could rise to some 1000 Exajoules by the end of the century. The makeup of that energy system will most likely look very different from today, but it is probably not a world without fossil energy; rather it is a world with net-zero carbon dioxide emissions. Carbon capture and storage therefore plays a significant role. Even in 2100, hydrocarbon fuels could still make sense for sectors such as aviation, shipping, chemicals and some heavy industry. Electrification of the energy system would need to shifted from ~20% today to over 50% during the century.

NZE Energy mix in 2100
The new supplement is called “A Better Life with a Healthy Planet. Pathways to Net-Zero Emissions”. The title highlights the intersection between the need for energy to meet the UN Sustainable Development Goals and the requirement of the Paris Agreement to reach net-zero emissions. A better life relies on universal access to energy. The publication comes with a wealth of online material to support it.

NZE Cover

Professor Sir David MacKay FRS

  • Comments Off on Professor Sir David MacKay FRS

I was sad to hear of the recent death of Professor Sir David MacKay. I had met him at a few events over the years, but his real impact on me was through his book Sustainable Energy: without the hot air.


Hopefully everyone who reads this blog has also had the opportunity to read David’s book, if not I can highly recommend it. It is free to download here. The book is a wonderful tour of energy use, written in a language that everyone can understand. Most importantly, it seeks to challenge and correct the many assertions made about how quickly and easily we can change the energy system or how easy it would be to power everything from a particular source. Professor MacKay took exception to the loose talk and poor reporting around energy issues and sought to rectify it. In the opening lines of his book he notes;

Perhaps the worst offenders in the kingdom of codswallop are the people who really should know better – the media publishers who promote the codswallop – for example, New Scientist with their article about the “water-powered car.”

That single sentence sets the tone for a very entertaining and thoroughly informative deep dive into all things energy related, with the maths to back it up. He even delves into climate science and offers a wonderful analogy for why atmospheric carbon dioxide is rising when anthropogenic flows of the gas are so much smaller than natural flows (trees etc.). He compares the atmosphere to passport control at an airport!!

But the calculation that has stuck in my head over several years relates to hydroelectricity in the United Kingdom. I don’t know why I remember this story in particular, I am no more a hydroelectricity enthusiast than I am a nuclear enthusiast, but his explanation was just so elegant. Many people imagine that because it rains quite a bit in the UK that we ought to be able to power much of the country with hydro, particularly in Scotland where it is also quite hilly. Professor MacKay’s simple calculation involved the land area of the UK, the average rainfall, the average elevation and the wildly optimistic assumption (just to silence the optimists) that we would catch every drop of rain and then all the potential energy within that water as it drops from the point at which it initially hits the ground until it gets to sea level. The absolute upper limit for hydro comes out at less than 10 kWh/person/day, but the more realistic figure is <2 kWh/person/day. This is against energy demand of around 200 kWh/person/day. Actual hydro in the UK is just 0.2 kWh/person/day.

Sadly we have lost an inspiring energy enthusiast and an entertaining writer and speaker. RIP Professor.

A focus on the Philippines

Last week I was in Manila participating in the opening panel session of the Shell sponsored energy event, Powering Progress Together. The panel included IPCC WG1 Co-chair, Dr. Edvin Aldrian from Indonesia; Philippine Department of Energy Secretary, Hon. Zenaida Y. Monsada; and Tony La Vina, a former Undersecretary of the Department of Environment and Natural Resources, but currently Dean of the Ateneo School of Government. With the focus of our panel being the energy transition and climate challenge it didn’t take long to get to the situation faced by the Philippines and the Intended Nationally Determined Contribution (INDC) it submitted to the UNFCCC in the run-up to COP21.

The Philippines has seen energy sector emissions rise sharply in recent years (see chart) with coal use doubling between 2007 and 2014, while natural gas and oil demand remained almost static. Although oil use for transport increased, this was offset by a drop in oil based power generation.

Philippines Energy Emissions

Against this backdrop the Philippines submitted an INDC which calls for a 70% reduction in emissions for 2030 against a business as usual projection which sees increasing coal use in the power sector. The charts below were prepared by the Department of Energy. By 2030, full INDC implementation would see only a modest change in coal capacity from current levels, but a significant increase in natural gas and growth in wind and solar such that they become material in the overall power generation mix.

Philippines Electrcity Capacity

The government also has big plans for the transport sector, with major electrification of the popular Jeepney (small buses) and tricycle (motorcycle based carriers) fleet. These are everywhere in Manila.

But as the Secretary pointed out in the panel discussion, this shift is dependent on outside financial help. The reduction goal represents at least 1 billion tonnes of cumulative carbon dioxide over the period 2015 to 2030 and although an anticipated cost of implementation isn’t given, it may well run into tens of billions of dollars. However, the immediate benefits should be considerable, particularly for health and welfare in cities such as Manila itself as roadside air quality improves with an alternative bus fleet. The INDC specifically notes (one of several mentions);

The mitigation contribution is conditioned on the extent of financial resources, including technology development & transfer, and capacity building, that will be made available to the Philippines.

The Philippines have certainly felt the sharp end of the global climate in recent years, but particularly with Typhoon Haiyan, a Category 5 Super Typhoon, in November 2013. That event led to a member of the Philippine delegation pledging to fast for the duration of COP 19 in Warsaw. The INDC is an ambitious start on their mitigation journey, but also highlights the challenges faced by many countries at a similar stage in their development. As the Philippine economy develops it will need much more energy than currently supplied; the surge in coal use as a response is also seen in many other national energy plans. Limiting the early growth of coal in emerging economies is one of the big global issues that the Paris Agreement and related INDCs must address as they are implemented. The provisions within Article 6 of the Agreement can help; ideally by channelling a carbon price into those economies with the necessary climate finance to change the energy outlook.

Solar thermal by the numbers

Early in February the King of Morocco, HE Mohammed VI, opened the first phase of what will eventually become a major solar energy facility in the centre of the country. On the same day, the King also laid the foundations for Phase 2. The project is a remarkable piece of engineering, with tracking parabolic mirrors reflecting and concentrating sunlight into a heating loop, which then transfers the energy into steam and ultimately electricity from turbines. The system also includes a molten salt energy storage system which provides 3 hours of turbine operation once the sun has set.

Noor Solar

The Noor Ouarzazate Concentrated Solar Complex is being developed 10 kms north-east of the city of Ouarzazate at the edge of Sahara Desert about 190 kms from Marrakesh. Phase One of the project involves the construction of a 160MW concentrated solar power (CSP) plant named Noor I, while Phase Two involves the construction of the 200MW Noor II CSP plant and the 150MW Noor III CSP plant. Phase Three will involve the construction of the Noor IV CSP plant.

The original cost of Noor I was estimated at about $1.1 billion, but various reports show that upwards of $2 billion has been spent, although a proportion of this must be for overall site development, roads, infrastructure etc. which will benefit all of the phases. A description of Phase II can be found on the World Bank website, with an estimated cost of $2.4 billion for construction and $300 million as a cost mitigation mechanism (i.e. to lower the cost of the electricity produced during the initial years of operation).

The initial 160 MW project has a net capacity of 143 MW, producing some 370 GWh of electricity output. This equates to a capacity factor of nearly 30% which is high for solar, but reflects the nature of the location and the energy storage mechanism using molten salt. Nevertheless, in terms of total annual output, this is similar to building a 60 MW gas turbine, although the gas turbine would always be limited to 60 MW, whereas the solar facility can output at higher levels through much of the day when businesses are open and drawing on the grid.

By the end of Phase 2, total capacity of the facility will be over 500 MW, at a capital cost of some $5 billion (although The Guardian puts this at $9 billion). Annual generation will amount to some 1500 GWhrs per annum. The per capita consumption of electricity in Morocco is around 1 MWhr, so this represents electricity for 1.5 million people. In the case of the USA, it would offer power to only 130,000 people. Phases 1 and 2 will occupy a land area of some 1900 hectares (about 4.4 by 4.4 kms)

The justification for the project is interesting and can be found in one of the documents on the World Bank project site. Carbon pricing figures strongly although there are no immediate plans for a robust carbon pricing system to be implemented in Morocco. The report concludes that Concentrated Solar is not economic on the basis of conventional cost-benefit analysis (the economic rate of return is negative over the anticipated 25-year horizon of the project); the economic benefits are taken as the avoided costs of the next best thermal alternative, which is CCGT using imported LNG. To be economic at the (real) opportunity cost of capital to the Moroccan government, the valuation of CO2 would need to be US$92/ton of CO2 (calculated as switching value, i.e. NPV of zero), or US$57/ton of CO2 when calculated as the Marginal Abatement Cost (MAC). The justification for the project is largely on the basis of macro-economic benefits for Morocco (jobs, technology transfer etc.) and global learning curve benefits.

The project is situated near a reservoir and is quite water intensive. Phase 1 is water cooled, but this is not the case for the later phases. However, there is ongoing water use for cleaning of the solar reflectors. For Phase 1 alone, the water use during operation represents 0.41% of the average yearly contribution to the Mansour Ed Dahbi Reservoir in the wet years, and 2.57% of the lowest recorded yearly contribution to the reservoir. The estimated total wastewater flow to be discharged to the evaporation ponds (visible in the foreground of the picture) is 425,000 m3/year.

Finally, there is the important aspect of emissions reduction. The Noor I CSP plant is expected to displace 240,000 tonnes a year of CO2 emissions. Based on the generation of 370 GWhrs per annum, this assumes an alternative energy mix of natural gas, some oil generation and a proportion of coal. For natural gas alone with its lower carbon footprint, the displacement could fall well below 200,000 tonnes. But like all such projects, this is displacement of CO2 which may result in a lower eventual accumulation. It is not direct management of CO2 such as offered by carbon capture and storage.

The Moroccan CSP is a fascinating project, but even more so as the numbers are put down on paper. With COP22 taking place in that country in November we are bound to hear more about it.

One million tonnes of CO2

The first week of November sees Shell officially open its first major carbon capture and storage (CCS) facility, the Quest project. It is in Alberta, Canada and will capture and store about one million tonnes of carbon dioxide per annum. Construction commenced back in September 2012 when the Final Investment Decision (FID) was taken and the plant started up and began operating for the first time in September of this year, just three years later. It is one of only a handful of fully integrated carbon capture and storage facilities operating globally. There are now many facilities that capture CO2 but mainly linked to Enhanced Oil Recovery which provides an income source for these projects.  Quest has dedicated CO2 storage, developed in an area some 65 kms from the capture site at a depth of about 2 kms.

Quest Construction

The Quest income source is not based on EOR; it has been able to take advantage of the government implemented carbon price that prevails within Alberta. Although the current carbon pricing mechanism has an effective ceiling of $15 per tonne CO2 which isn’t sufficient for CCS, let alone a first of its kind, it nevertheless provides a valuable incentive income to operate the facility which has been built on the back of two substantial capital grants from the Provincial and Federal governments respectively. A supplementary mechanism also in place in Alberta provide credits related to the carbon price mechanism for the early years of a CCS project, providing additional operating revenue for any new facility.

Canada, as it turns out, has become a global leader in CCS. The Quest facility is the second major project to be started up in Canada is as many years, with the Saskpower Boundary Dam project commencing operations this time last year.

As noted, Quest will capture and store approximately one million tonnes of carbon dioxide per annum. It demonstrates how quickly and efficiently large scale CO2 management can be implemented once the fiscal conditions are in place. Quest, which is relatively small in scale for an industry that is used to managing gas processing and transport in the hundreds of millions to billions of tonnes globally, demonstrates both the need for continued expansion of the CCS industry and the importance of carbon pricing policy to drive it forward. This single facility far surpasses the largest solar PV facilities operating around the world in terms of CO2 management. Take for example the Desert Sunlight Solar Farm in California, currently the fourth largest solar PV power station in the world. According to First Solar, it displaces 300,000 tonnes of CO2 annually, less than a third of that captured and permanently stored by Quest.

A key difference though is the use of the word displace. Alternative energy projects don’t directly manage CO2, they generate energy without CO2 emissions. But, as I have noted in previous postings and in my first book, the release of fossil carbon to the atmosphere is more a function of energy prices and resource availability. This means that even when a project like Desert Sunlight operates, the CO2 it notionally displaces may still be released at some other location or at some other time, depending on long term energy prices and extraction economics. There is no doubt that the CO2 is not being emitted right now in California, but that doesn’t necessarily resolve the problem. Quest, by contrast, directly manages the CO2 from fossil fuel extraction.

The requirement to provide alternative energy (i.e. without CO2 emissions) needs to grow, but we shouldn’t imagine that such action, by itself, will fully resolve the climate issue. That will come through the application of carbon pricing mechanisms by governments, driving the further expansion of both the alternative energy and CCS industries as a result.

A video about the Quest project, made by the constructors, Fluor, is available here.

FASTER carbon pricing mechanisms

  • Comments Off on FASTER carbon pricing mechanisms

Last week New York hosted amongst other events, the Papal visit, the UN General Assembly where some 150 world leaders gathered and Climate Week. Arguably this had the makings of a bigger coming together than COP21 itself, although many other issues were also on the agenda, such as the UN Sustainable Development Goals. Nevertheless, the climate issue progressed and the subject of carbon pricing was widely discussed, both how it might be implemented by governments and how companies could use carbon valuation internally in relation to project implementation and risk management.

A highpoint of the Climate Week events was the release by the World Bank of its FASTER principles on implementation of carbon pricing mechanisms . This is work to support the overall push by that organisation for greater uptake of explicit carbon pricing mechanisms at national level as governments consider how they might implement their INDCs.

FASTER is an acronym, with each of the terms further elaborated in a fairly readable 50 page accompanying document. The short version is as follows;

  • F – Fairness
  • A – Alignment of Policies
  • S – Stability and Predictability
  • T – Transparency
  • E – Efficiency and Cost-Effectiveness
  • R – Reliability and Environmental Integrity

I have a slight feeling that the acronym was thought up before the words, but each of the subject areas covered is relevant to the design of a carbon pricing mechanism by governments, such as a cap-and-trade system.

Importantly, the principles recognise many of the key issues that early cap-and-trade and taxation systems have confronted, such as dealing with competitiveness concerns, managing competing policies and complementing the mechanism with sufficient technology push in key areas such as carbon capture and storage and renewables. The latter requires something of a Goldilocks approach in that too little can result in wasted resource allocation, but too much while also being wasteful can end up becoming a competing deployment policy.

In the various workshops held during Climate Week, one aspect of the FASTER principles that did draw comment was the call for a “predictable and rising carbon price”. Predictability should be more about the willingness of government to maintain the mechanism over the long term, rather than a clear sign as to what exactly that price might be. For the most part, commodity markets exist, trade and attract investment on the basis that they are there and that the commodity itself will continue to attract demand for decades to come. We are still some way from a reasonable level of certainty that carbon pricing policies will be in place over many decades, given that they do not enjoy cross-party support in all jurisdictions.

Particularly for the case of a cap-and-trade system, a rising carbon price cannot be guaranteed. Rather, the system requires long term certainty in the level of the cap, after which the market will determine the appropriate price at any given point in time. This might rise as the EU ETS saw in its early days, but equally the widespread deployment of alternative energy sources or carbon capture and storage could see such a system plateau at some price for a very long time. Even within this, capital cycles could lead to the same price volatility as is seen in most commodity markets.

The guarantee of a rising price may not be the case for a tax based system either. Should emissions fall faster than the government anticipates, there could be popular pressure for an easing of the tax. As carbon tax becomes mainstream, we shouldn’t imagine it would be treated any differently to regular income based or sales tax levels, both of which can fluctuate.

The release of the FASTER Principles coincides with my own book on carbon pricing mechanisms, which was launched just prior to Climate Week. I cover many of the same topics, but drawing more on the events that have transpired over the last decade. Both these publications will hopefully be of interest to individuals and businesses in China, the government of which formally announced the implementation of a cap-and-trade system from 2017. This will be an interesting implementation to watch, in that it may well be the first such system that operates on a rising cap, at least for the first few years. Irrespective, the announcement ensured that Climate Week ended on a high note.

Do we have a wicked problem to deal with?

  • Comments Off on Do we have a wicked problem to deal with?

Two recent and separate articles in Foreign Affairs highlight different routes forward for tacking the climate issue. One, by Michael Bloomberg, argues that the mitigation solution increasingly lies with cities (this isn’t just about city resilience) and the other puts the challenge squarely in front of the business community.

These are just two in a salvo of pre-Paris articles that seek to direct the negotiations towards a solution space, including some by me and other colleagues arguing the case for carbon pricing systems. The articles reminded me of a similar article in 2009, the Hartwell Paper, in which a group of UK economists cast the climate issue as a ‘wicked problem’, but still went on to propose a very specific solution (a big technology push funded by carbon taxes). That paper also built its argument on the back of the Kaya Identity, which I have argued simplifies the emissions problem such that it can lead to tangential solutions that may not deliver the necessary stabilization in atmospheric carbon dioxide. Nevertheless, there is still merit in focusing on a specific way forward – at least something useful might then get done.

But the description of the climate problem as ‘wicked’, is one that deserves further thought. The use of the word wicked in this context is different to its generally accepted meaning, but instead pertains to the immense difficulty of the problem itself. Wikipedia gives a good description;

A problem that is difficult or impossible to solve because of incomplete, contradictory, and changing requirements that are often difficult to recognize. The use of the term “wicked” here has come to denote resistance to resolution, rather than evil. Moreover, because of complex inter-dependencies, the effort to solve one aspect of a wicked problem may reveal or create other problems.

It is also important to think about which problem we are actually trying to solve. For example, it may turn out that the issue of climate change is immensely more difficult to solve than the issue of carbon dioxide emissions. There is now good evidence that emissions can be brought down to near zero levels, but this doesn’t necessarily resolve the problem of a changing climate. Although warming of the climate system is being driven by increasing levels of carbon dioxide in the atmosphere, the scale on which anthropogenic activities are now conducted can also impact the climate through different routes. Moving away from fossil fuels to very large scale production of energy through other means is a good illustration of this. In a 2010 report, MIT illustrated how very large scale wind farms could result in some surface warming because the turbulent transfer of heat from the surface to the higher layers is reduced as a result of reduced surface kinetic energy (the wind). This is because that energy is converted to electricity. This is not to argue that we shouldn’t build wind turbines, but rather to highlight that with a population of 7-10 billion people all needing energy for a prosperous lifestyle, society may inadvertently engage in some degree of geoengineering (large-scale manipulation of an environmental process that affects the earth’s climate) simply to supply it.

Even narrowing the broader climate issue to emissions, the problem remains pretty wicked. Inter-dependencies abound, such as when significant volumes of liquid fuels may be supplied by very large scale use of biomass or when efficiency drives an increase in energy use (as it has done for over 100 years), rather than the desired reduction in emissions.

An approach to managing wicked problems (Tim Curtis, University of Northampton) first and foremost involves defining the problem very succinctly. This involves locking down the problem definition or developing a description of a related problem that you can solve, and declaring that to be the problem. Objective metrics by which to measure the solution’s success are also very important. In the field of climate change and the attempts by the Parties to the UNFCCC to resolve it, this is far from the course currently being taken. There is immense pressure to engage in sustainable development, end poverty, improve access to energy, promote renewable technologies, save forests, solve global equity issues and use energy more efficiently. Although these are all important goals, they are not sufficiently succinct and defined to enable a clear pathway to resolution, nor does solving them necessarily lead to restoration of a stable climate. The INDC based approach allows for almost any problem to be solved, so long as it can be loosely linked to the broad categories of mitigation and adaptation. The current global approach may well be adding to the wickedness rather than simplifying or even avoiding it.

The short article referenced above concludes with a very sobering observation;

While it may seem appealing in the short run, attempting to tame a wicked problem will always fail in the long run. The problem will simply reassert itself, perhaps in a different guise, as if nothing had been done; or worse, the tame solution will exacerbate the problem.

In climate change terms, this translates to emissions not falling as a result of current efforts, or even if they do fall a bit this has no measurable impact on the continuing rise in atmospheric carbon dioxide levels.

But that is not to say we should give up, as the counter to this observation is that having defined a clear and related objective to the wicked problem that is being confronted, declare that there are just a few possible solutions and focus on selecting from among them. For me, that comes down to implementing a cost for emitting carbon dioxide through systems such as cap-and-trade or carbon taxation. As such, I am about to release a second book in my Putting the Genie Back series, this one titled Why Carbon Pricing Matters. It will be available from mid-September but can be pre-ordered now.

Why Carbon Pricing Matters

Will the Clean Power Plan deliver effective emission reductions?

  • Comments Off on Will the Clean Power Plan deliver effective emission reductions?

August 3rd saw the Obama Administration release its long awaited Clean Power Plan. The plan partly underpins the current US COP21 INDC (Intended Nationally Determined Contribution) to reduce emissions by 26-28% by 2025 compared to 2005. It also indicates that by 2030 the power sector emissions in the USA will be 32% lower than 2005 levels, which presumably is the beginning of the next phase of their national contribution. However, this plan if for electricity only, consumption of which represents a bit less than a quarter of final energy use in the USA.

Much of the media attention was on the proposal for existing power plants, but the rule comes in two parts; one for existing sources and a second one for new sources. For existing facilities the emphasis is on the near term (i.e. through to 2030), with the rule focussed more on portfolio transition than radical adjustment. As has been seen in recent years, the US is already on a journey of portfolio change, with significant retirement of older coal fired power stations underway and much greater utilization of surplus natural gas power generation capacity. This has been largely driven by the development of shale gas, which came at an opportune time given the age of the coal fired fleet. Back in 2010 I posted the two charts below, which contrast the ageing coal fleet (median build year around 1970-1975) with the relatively new natural gas infrastructure (median build year around 2000). The whole process has quickly and efficiently reduced emissions across the United States – a phenomena also seen in the UK in the 1990s as North Sea natural gas overwhelmed the older coal based infrastructure.

US Coal Fleet

US coal generation capacity

US Natural Gas Fleet

US natural gas generation capacity

The US journey of substitution continues today, but augmented by considerable solar and wind capacity. The new rule for existing plants encourages that transition to continue, focussing on energy efficiency in coal fired power plants (Building Block 1), continued substitution of coal by natural gas (Building Block 2) and a further push on renewables (Building Block 3). But the rule puts significant near term emphasis on renewable energy development rather than further encouraging the further uptake of natural gas. In fact, through the use of a crediting mechanism (Emission Rate Credits) within the EPA rule, the efficient displacement of coal by natural gas is curtailed, possibly even leading to a similar outcome as experienced over recent years in the EU, a higher overall energy cost and some coal growth. This happened in the EU because of near term renewable energy policies bringing more distant and costly projects forward, which in turn supressed the carbon price and the otherwise successful switching away from coal to natural gas that the carbon price was driving at the time.

In any plan to manage power sector emissions, carbon capture and storage (CCS) is almost certainly a long term requirement, so it should be encouraged from the outset. In the case of the existing source rule, there is no particular steer towards CCS. Although CCS is mentioned about sixty times in the 1,500 page document, there is a significant caveat; cost. While the rule makes several references to the cost of CCS, this is much more in the context of retrofit of facilities that have limited remaining shelf life. Although CCS is critically important over the longer term, it doesn’t make much economic sense to retrofit old facilities with the technology and as can be seen above, the new build coal fleet is relatively small.

But CCS does come into the picture when looking at the construction of new coal fired power plants. These will operate for up to fifty years, well into the period when the USA may want to reduce national emissions to very low levels, yet still make use of the vast fossil fuel resources that is has at its disposal. The EPA rule finds that the best system for emission reduction (BSER) for new steam units is highly efficient supercritical pulverized coal (SCPC) technology with partial carbon capture and storage (CCS). In such cases, the final standard is an emission limit of 1,400 lb CO2/MWh‐gross, which is the performance achievable by an SCPC unit capturing about 20 percent of its carbon pollution. This offers some opportunity for CCS to develop in the near term, depending of course on the rate at which older coal fired power stations are displaced and new ones are proposed. That in turn may be hampered by the Emission Rate Credit mechanism. A flaw in the thinking on ERCs (and also for much of the push towards renewable energy as a means of dealing with atmospheric CO2) is the assumption that a tonne of CO2 not emitted now by generating electricity from renewable energy or improving efficiency equates to a lower eventual concentration of CO2 in the atmosphere.  This may not be the case, a point I discuss at some length in my e-book, Putting the Genie Back. Given that both geographical (used elsewhere) and temporal (used later) displacement of fossil fuel is a reality, the actual offset of CO2 by using renewable energy is dependent on the future energy scenario. By contrast, a tonne of CO2 stored is over and done with. Renewable energy should certainly be encouraged, but not at the cost of pushing CCS out of the picture.

The USA is now heading towards an electricity mix that consists of efficient natural gas generation, some legacy coal, renewables, some nuclear and possibly coal with CCS. It has taken a long time to get to this position and doubtless there will be challenges ahead, but the direction appears to be set. However, I will always argue that a well implemented emissions trading system could have achieved all this more efficiently, at lower cost and therefore with less pain, but at least for now that is not to be (or is it – there are a legion of trading provisions within the rule).

From sunlight to Jet A1

In a world of near zero anthropogenic emissions of carbon dioxide, there remains the problem of finding a fuel or energy carrier of sufficiently high energy density that it remains practical to fly a modern jet aeroplane. Commercial aviation is heading towards some 1 billion tonnes of carbon dioxide per annum so doing nothing may not be an option.

Although planes will certainly evolve over the course of the century, the rate of change is likely to be slow and particularly so if a step change in technology is involved. In 100 years of civil aviation there have been two such step changes; the first commercial flights in the 1910s and the shift of the jet engine from the military to the commercial world with the development of the Comet and Boeing 707. The 787 Dreamliner is in many respects a world away from the 707, but in terms of the fuel used it is the same plane; that’s 60 years and there is no sign of the next change.

Unlike domestic vehicles where electricity and batteries offer an alternative, planes will probably still need hydrocarbon fuel for all of this century, perhaps longer. Hydrogen is a possibility but the fuel to volume ratio would change such that this could also mean a radical redesign of the whole shape of the plane (below), which might also entail redesign of other infrastructure such as airport terminals, air bridges and so on. Even the development and first deployment of the double decker A380, something of a step change in terms of shape and size, has taken twenty years and cost Airbus many billions.


For aviation, the simplest approach will probably be the development of a process to produce a look-alike hydrocarbon fuel. The most practical way to approach this problem is via an advanced biofuel route and a few processes are available to fill the need, although scale up of these technologies has yet to take place. But what if the biofuel route also proves problematic – say for reasons related to land use change or perhaps public acceptance in a future period of rising food prices? A few research programmes are looking at synthesising the fuel directly from water and carbon dioxide. This is entirely possible from a chemistry perspective, but it requires lots of energy; at least as much energy as the finished fuel gives when it is used and its molecules are returned to water and carbon dioxide.

Audi has been working on such a project and recently announced the production of the first fuel from their pilot plant (160 litres per day). According to their media release;

The Sunfire [Audi’s technology partner] plant requires carbon dioxide, water, and electricity as raw materials. The carbon dioxide is extracted from the ambient air using direct air capture. In a separate process, an electrolysis unit splits water into hydrogen and oxygen. The hydrogen is then reacted with the carbon dioxide in two chemical processes conducted at 220 degrees Celsius and a pressure of 25 bar to produce an energetic liquid, made up of hydrocarbon compounds, which is called Blue Crude. This conversion process is up to 70 percent efficient. The whole process runs on solar power.

Apart from the front end of the facility where carbon dioxide is reacted with hydrogen to produce synthesis gas (carbon monoxide and hydrogen), the rest of the plant should be very similar to the full scale Pearl Gas to Liquids (GTL) facility that Shell operates in Qatar. In that process, natural gas is converted to synthesis gas which is in turn converted to a mix of longer chain hydrocarbons, including jet fuel (contained within the Audi Blue Crude). The Pearl facility produces about 150,000 bbls/day of hydrocarbon product, so perhaps one hundred such facilities would be required to produce enough jet fuel for the world (this would depend on the yield of suitable jet fuel from the process which produces a range of hydrocarbon products that can be put to many uses). Today there are just a handful of gas-to-liquids plants in operation; Pearl and Oryx in Qatar, Bintulu in Malaysia and Mossel Bay in South Africa (and another in South Africa that uses coal as the starting feedstock). The final conversion uses the Fischer Tropsch process, originally developed about a century ago.

Each of these future “blue crude” facilities would also need a formidable solar array to power it. The calorific content of the fuels is about 45 TJ/kt, so that is the absolute minimum amount of energy required for the conversion facility. However, accounting for efficiency of the process and adding in the energy required for air extraction of carbon dioxide and all the other energy needs of a modern industrial facility, a future process might need up to 100 TJ/kt of energy input. The Pearl GTL produces 19 kt of product per day, so the energy demand to make this from water and carbon dioxide would be 1900 TJ per day, or 700,000 TJ per annum. As such,  this requires a nameplate capacity for a solar PV farm of about 60 GW – roughly equal to half the entire installed global solar generating capacity in 2013. A Middle East location such as Qatar receives about 2200 kWh/m² per annum, or 0.00792 TJ/m² and assuming a future solar PV facility that might operate at 35% efficiency (considerably better than commercial facilities today), the solar PV alone would occupy an area of some 250 km² , so perhaps 500 km² or more in total plot area (i.e. 22 kms by 22 kms in size) for the facility.

This is certainly not inconceivable, but it is far larger than any solar PV facilities in operation today; the Topaz solar array in California is on a site 25 square kms in size with a nameplate capacity of 550 MW.  It is currently the largest solar farm in the world and produces about 1.1 million MWh per annum (4000 TJ), but the efficiency (23%) is far lower than my future assumption above. At this production rate, 175 Topaz farms would be required to power a refinery with the hydrocarbon output of Pearl GTL. My assumptions represent a packing density of solar PV some four times better than Topaz (i.e. 100 MW/km² vs 22 MW/km²).

All this means that our net zero emissions world needs to see the construction of some 100 large scale hydrocarbon synthesis plants, together with air extraction facilities, hydrogen and carbon monoxide storage for night time operation of the reactors and huge solar arrays. This could meet all the future aviation needs and would also produce lighter and heavier hydrocarbons for various other applications where electricity is not an option (e.g. chemical feedstock, heavy marine fuels). In 2015 money, the investment would certainly run into the trillions of dollars.