Archive for the ‘Climate Science’ Category

A blast from the past

We might think of climate change as a phenomenon only reported on by the 21st Century media and imagine that only the people of today are really aware of the risks posed by the rising level of carbon dioxide in the atmosphere. Although the science dates back to the mid to late 19th century, why would anybody of that period take an interest in or even know about the impact that this might have on future generations?

Much to my surprise I recently found that there was interest and from somewhere close to home (for me at least). The clip below comes from a small country newspaper, printed not far from Canberra in Australia in July 1912.

Braidwood

 

COAL CONSUMPTION AFFECTING CLIMATE.

 The furnaces of the world are now burning about 2,000,000,000 tons of coal a year. When this is burned, uniting with oxygen, it adds about 7,000,000,000 tons of carbon dioxide to the atmosphere yearly. This tends to make the air a more effective blanket for the earth and to raise its temperature. The effect may be considerable in a few centuries.

The newspaper in question was the Braidwood Dispatch and Mining Journal, which first appeared on 10 April 1859 and was published twice weekly from 1859 until January 1958. Braidwood was not a big town and was hardly a centre for global studies. A picture of the town centre some twelve years earlier at the turn of the century is shown below.

wallace-st-braidwood

What I find as interesting as the article itself is the fact that it was printed in such a newspaper. This was a small country town yet the newspaper had a science column (Science Notes and News), which is where the snippet comes from. A science column would be hard to find in any newspaper today. Other stories in the same edition talk of a seven thousand foot bore hole drilled in Germany and the revelation that core temperature rises by about 1°C per 100 feet, not to mention the arrival of a skipping machine on the market which turns the rope and records the number of skips.

But perhaps the most interesting question to ponder is where the story came from? Sixteen years earlier Svante Arrhenius had published his paper on the influence of carbonic acid (N.B. Arrhenius refers to carbon dioxide as “carbonic acid” in accordance with the convention at the time he was writing.) in the air upon the temperature of the ground and in it he made mention of the combustion of coal and its release of carbon dioxide into the atmosphere. He wrote more on this in later work. It is unlikely, but not improbable, that the editor of the local newspaper in Australia was busy reading scientific papers by Arrhenius, but the copywriter may have been reading a variety of magazines and publications from which he or she would extract bits and pieces for republication in the Braidwood Dispatch. That means the story probably came from a longer discussion in another journal, but I don’t know which one. It also means that the copywriter thought that the readers of the Dispatch would be interested in this article, which in itself is a revelation.

Arrhenius

 

Going below zero

  • Comments Off on Going below zero

With the advent of the Paris Agreement, there is a new focus on net zero emissions. This is largely driven by a better understanding of climate science (the importance of cumulative emissions), but also by a line in the Agreement itself which calls for a ‘balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases in the second half of this century’. This potentially brings into play a set of technologies known as negative emissions technologies or NETs. A NET is a technology which draws down on atmospheric carbon dioxide; perhaps the simplest implementation of this is planting a tree.

NETs are required for two reasons over the long term;

  1. Be it local or global, a requirement for net zero emissions will inevitably mean a balance between remaining sources of emissions and the removal of carbon dioxide from the atmosphere as an offset, rather than a world of no emissions at all. Remaining sources of emissions could include some continuing use of fossil fuels but without dedicated carbon capture and storage (e.g. aviation) or very difficult to manage emissions such as from the agriculture sector. This requirement may only need NET deployment on a modest scale, simply to match the remaining emission sources. However, if those sources remain significant, then NET deployment would have to be scaled to match.
  2. At a global level, cumulative emissions may have exceeded a desired level for a certain temperature goal, in which case there is a need for an overall drawdown on atmospheric carbon dioxide, beyond that which natural sinks might deliver (e.g. continued ocean uptake). This is likely to require very significant deployment of NETs, certainly on the many gigatonnes per annum scale.

Even before the Paris Agreement, an in-depth look at the IPCC 5th Assessment report would have shown that many of the scenarios consistent with the 2°C goal included a period in the second half of the century when global emissions were negative to achieve a net drawdown on atmospheric carbon dioxide. The reason for needing such a period is that under these scenarios it doesn’t prove possible to limit emissions sufficiently, given the time it takes to re-engineer the energy system in the face of rising demand and legacy infrastructure.

The Paris Agreement has only strengthened the need for negative emissions technologies. With a goal of somewhere between 1.5 and 1.8C (‘well below’, as the Agreement states, could be interpreted as at least 10% below 2°C), the cumulative emissions of carbon should be some 175 billion tonnes of carbon lower than for a 2°C scenario, or 640 billion tonnes CO2. At current levels, that is the equivalent of 15 years emissions. As I illustrated in a pre-Paris post, decades of NET deployment and use may be required to meet this stringent carbon budget.

A recent article in Nature Climate (Biophysical and economic limits to negative CO2 emissions, Nature Climate Vol 6, January 2016) looks more deeply at the set of technologies that society may come to depend on in the coming decades. The article neatly categorises them with yet another set of acronyms (with OU, AS and BC ascribed by me);

  • BECCS: bioenergy with carbon capture and storage.
  • DAC: Direct air capture of carbon dioxide from ambient air by engineered chemical reactions. This would then become DACS (or DACCS) if geological storage were involved.
  • EW: Enhanced weathering of minerals, where natural weathering to remove carbon dioxide from the atmosphere is accelerated and the products stored in soils, or buried deep in land or deep-ocean.
  • AR: Afforestation and reforestation to fix atmospheric carbon ion biomass and soils.
  • OU: manipulation of carbon uptake by the ocean, either biologically or chemically.
  • AS: Altered agricultural practices, such as increased carbon storage in soils.
  • BC: Converting biomass to recalcitrant biochar, for use as a soil amendment.

The article focusses on BECCS, DAC, EW and AR and gives a detailed breakdown of the global impacts of these technology areas in terms of water, energy needs, land use and so on. It is clear that there is no silver bullet to rely on. While BECCS and DAC can potentially be deployed at scale and make a material difference to atmospheric carbon dioxide (>3 GT Carbon per annum by 2100, or 10+ GT CO2), BECCS requires significant land and water use (but is a net energy producer), whereas DAC is a big energy user. The latter is also deemed to be very expensive to implement. EW, on the other hand, just doesn’t make the grade in terms of scale. That leaves AR, which is certainly scalable but only very large scale deployment occupying huge swathes of land will make a significant difference in atmospheric carbon dioxide.

The paper ends with the rather sobering recognition that a failure of NETs to deliver expected mitigation in the future due to any combination of the biophysical and economic limits examined, leaves the world with no ‘Plan B’. Clearly there is much more to be done to commercialise and deliver a sustainable pathway for this family of technologies.

The highlight of the Paris Agreement is without question the ambition embodied within it. This had its foundation with the Alliance of Small Island States (AOSIS) and their deep concern regarding future sea level rise. But the issue snowballed as the conference progressed, supported by a strong dose of techno-optimism that was prevalent throughout the halls of the Le Bourget Conference Centre. The text that was agreed upon is important, with the goal embodied in to distinct sections;

Holding the increase in the global average temperature to well below 2 °C above pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5 °C above pre-industrial levels, recognizing that this would significantly reduce the risks and impacts of climate change;

Parties aim to reach global peaking of greenhouse gas emissions as soon as possible, recognizing that peaking will take longer for developing country Parties, and to undertake rapid reductions thereafter in accordance with best available science, so as to achieve a balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases in the second half of this century . . .

In a post written before the conclusion of COP21, I assessed that a 1.5°C goal would require a rapid forty year transition to net-zero anthropogenic emissions and a period until at least the end of the century with negative emissions via BECCS (bioenergy and CCS) and DACCS (direct air capture and CCS). But the pathway proposed by the Agreement itself isn’t quite as ambitious, even while it aspires to a 1.5+°C outcome. Rather, it proposes achieving a balance between anthropogenic emissions and removals by sinks in the second half of the century. This may not be sufficient to achieve the 1.5+°C goal, with a key deciding element being the role of natural sinks.

The 1.5+°C pathway issue is highlighted in a paper published by the MIT Joint Program in July 2013. MIT deliberately avoided the use of negative emissions technologies, partly due to concerns about their scalability but also preferring to test the impact of natural sinks on the outcome. Of these, the ocean is the major short term sink because of the imbalance between levels of CO2 in the ocean and the atmosphere.

MIT analyzed four pathways that result in net zero anthropogenic emissions. These are shown in the chart below (fossil energy CO2 emissions only) against a business as usual trajectory based on the 2010 post-Copenhagen national pledges.

  1. An immediate drop to net zero by 2015, starting in 2010 (Natural only after 2015).
  2. A very rapid drop to net zero by 2035, but with growth from 2010 to 2030 (Natural only after 2035).
  3. A more extended drop to net zero by 2060, with the decline commencing in 2010 (Alternative).
  4. The IEA 450 scenario, with emissions peaking around 2020 and reaching net zero by 2070 (IEA 450).

MIT Scenarios - CO2 emissions

Pathway 3 is of particular interest. In this case anthropogenic emissions are at net zero by 2060, although starting to decline from 2010 when energy emissions are at 30 Gt CO2 per annum (it is now 2016 and they are at ~33 Gt). This scenario sees temperatures rise above 2°C by mid-century, but then decline as the ocean takes up significant quantities of CO2 from the atmosphere but with nothing being added from anthropogenic sources.  After some 20-30 years, as the ocean’s upper layer comes into balance with the atmosphere, uptake of CO2 slows. Mixing into the deep ocean is much slower but will continue for hundreds to thousands of years.

Back in 2010 the cumulative emissions from 1750 (to 2010) stood at some 532 billion tonnes carbon, which means that Pathway 3 approximates a 1.5°C outlook as the area under the curve from 2010 to 2060 (energy, cement and land use) represents an additional 250 billion tonnes of carbon emissions, giving a total of some 780 billion tonnes. The relationship between carbon emissions and temperature is about 2°C per trillion tonnes. The chart below shows the modelled pathway which results in an end-of-century temperature rise of 1.5°C.

MIT Scenarios - Temperature

The natural sink is therefore very important, offering some 0.5°C (see the light blue line in the chart above) of temperature reduction following an overshoot. This is possibly the only way in which 1.5°C can be met,  although significant anthropogenic sinks may also be developed (including reforestation) later which could offer the same drawdown. As such, with the Paris Agreement potentially not making use of this and instead only providing for emissions to fall to a level which matches the ability of sinks to take up carbon emissions, the task of meeting 1.5°C becomes considerably more difficult.

The same is true of the IEA 450 Scenario. With 2010 now behind us, the future equivalent of the Alternative pathway which saw reductions from 2010 onwards is probably the red 450 line (reductions from 2020), which overshoots to 2.7°C before achieving something of a plateau at 2°C. But to bring this down further by the end of the century and therefore comply with the Paris Agreement would also require the major application of anthropogenic sinks, such as via CCS and rapid reforestation.

This discussion may be something of a moot point today because the job of rapidly reducing emissions hasn’t even started and arguably we have at least 40+ years to think about where the endpoint should be. Nevertheless, as nations begin to reflect on the Paris outcome in the coming months and relook at their respective reduction pathways, the long term end point does become relevant because energy infrastructure planning requires a multi-decadal outlook. In its initial formulation of a long term carbon budget, the UK did need to look forward to 2050 but that was from a 2008 starting point. With a new starting point of 2020 or thereabouts, a 2060 or even 2070 end-point may well be considered.

There is of course a disturbing flip side to this story – continued rapid uptake of CO2 by the ocean also gives rise to increasing levels of ocean acidification.

COP21: A Pathway for 1.5°C

The case for limiting the rise in global temperatures to 2°C was made many years ago and finally agreed at COP16 in Cancun in 2010. But the text noted the importance of an even more aggressive target, notably 1.5°C, proposed by the small island states who were deeply concerned about future sea level rise. While 1.5°C doesn’t guarantee to limit sea level rise such that certain island nations remain safe, it does further shift the global risk profile in terms of possible major changes in the ice shelves.

The idea of a 1.5°C goal has remained largely in the background since 2010, but COP21 has brought the issue to the forefront of negotiators minds, with a reported group of some 100 countries now willing to support such an objective. At a reception early in the second week, the UK Climate Minister was very upbeat about the 1.5°C goal and the government’s role in working with AOSIS (Alliance of Small Island States). At the COP Plenary on Wednesday night (9th December), many groups and nations spoke about the need for a 1.5°C goal.  But while there is increasing enthusiasm for and talk about such a goal, there seems to be limited substantive discussion on the feasibility of achieving it.

As often discussed in my postings, the expected global temperature rise is closely linked with cumulative emissions over time, not the level of emissions in a certain year. This means that what might have seemed achievable in 2010, is all the more difficult in 2015 with higher emissions and continued upward pressure. In fact, between 2010 and 2015 another 60 billion tonnes of carbon has been released into the atmosphere. Total emissions since 1750 now stand at just under 600 billion tonnes carbon, with 1.5°C equivalent to some 750 billion tonnes carbon based on a climate sensitivity of 2°C per trillion tonnes. Even if emissions were to continue to plateau as we have seen over 2014-2015, the 1.5°C threshold would be reached as early as 2028.

There are always a variety of trajectories possible for any temperature goal, but 1.5°C offers little room for flexibility, given its stringency. One such pathway which adds up to ~750 billion tonnes carbon by 2100 is shown below (global CO2 emissions on the vertical scale). In this pathway, global net zero emissions must be reached in just 40 years (860 billion tonnes accumulation), followed by another half century of atmospheric carbon removal and storage (~100 billion tonnes removal). Some 10 billion tonnes of CO2 must be removed and stored each year by late in the century, either through bio-energy with carbon capture and storage (BECCS) or direct air capture of CO2 and subsequent storage (DACCS). Significant reforestation would also play a major role. With infrastructure in place, the 22nd century might even offer the possibility of drawing down on CO2 below a level that corresponds with 1.5°C.

OnepointfiveC

Apart from massive reliance on CCS both on the way to net zero emissions and afterwards to correct the over accumulation, such a plan would require a complete rebuild of the energy system in just 40 years. This would include the entire industrial system, all transport and power generation. Alternatives would have to be found for many petroleum based products and a new large scale synthetic hydrocarbon industry would be needed for sectors such as aviation and shipping. While agriculture is largely a bio based emissions system, a solution to agricultural methane emissions would also nevertheless be needed.

A pathway that doesn’t involve future use of CCS would require net zero emissions in just 23 years – an option that isn’t even remotely feasible. Returning to the 40 year pathway, even this presents an immensely challenging task. While it might be feasible to have a zero emissions power sector in under 40 years, particularly given that all the necessary technologies to do so exist in one form or another, electricity still represents only 20% of final energy use. Solutions would have to be found for all other sectors, which in many instances involves electrification and therefore places a significant additional load on the redevelopment of the power generation system. Aviation would be particularly tricky.

Finally, there is CCS itself. The pathway above (and almost any other 1.5°C pathway) is completely dependent on it, yet the technology is hardly deployed today. It is certainly commercially ready, but the barriers to deployment are many, ranging from the lack of an economic case for project development to public concern about deep storage of carbon dioxide. The later that net zero emissions is reached, the greater the post net zero dependence on CCS becomes.

While the case for 1.5°C has certainly been made from a climate perspective, it has yet to be demonstrated from an implementation perspective.

COP21: Targets, goals and objectives

  • Comments Off on COP21: Targets, goals and objectives

As the negotiators struggle on in Paris at COP21, the question of the long term goal has emerged. What should it be, how should it be structured and will it send the necessary signal to drive future national contributions.

The idea of a goal goes back to the creation of the UNFCCC. There is the original text agreed when the Convention was first written in 1992, i.e. “. . . stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system . . . “. At COP16 in Cancun, the Parties to the UNFCCC reformulated this as a numerical goal; the need to limit warming of the climate system to no more than 2°C above the pre-industrial level with consideration for reducing this to 1.5°C as the science might dictate. This seems very clear, but in fact offers little immediate guidance to those attempting to establish a national or even global emissions pathway.

The climate system is a slow lumbering beast and the global temperature could take years or even decades to settle down once there is stabilization of carbon dioxide (and other greenhouse gases) in the atmosphere. It could be decades after that before we are collectively sure that no further temperature rises will take place. But the science has shown that the eventual rise in temperature is strongly related to the cumulative emissions of carbon dioxide over time, starting when emissions were negligible (say 1750) and running through several centuries (e.g. to 2500). Myles Allen et. al. from Oxford University equated 2°C to the cumulative release of one trillion tonnes of carbon, which offers a far more mechanistic approach to calculating the point at which 2°C is reached. So far, cumulative emissions amount to some 600 billion tonnes of carbon. However, even this approach has uncertainty associated with it in that the actual relationship between cumulative emissions and temperature is not precisely known. If emissions stopped today, it is very unlikely (but not a zero chance) that warming would continue to above 2°C, but if emissions were to stop when the trillion tonne threshold is reached then there is only a 50% chance that the temperature would stay below 2°C. The agreement in Cancun doesn’t cover uncertainty.

The Oxford University team have developed a website that counts carbon emissions in a bid to familiarize people with the concept. As of writing this post, it was counting through 596 billion tonnes and provided an estimate that 1 trillion tonnes will be reached in October 2038. The INDCs already reach out to 2030 and as they stand, will not put the necessary dent into the global emissions profile that is needed to avoid passing one trillion tonnes. In terms of energy system development, 2038 is in the medium term. Most forecasts out to this period, including the IEA New Policies Scenario which factor in the INDCs, show energy demand and emissions rising over that period, not falling.

In line with the Cancun Agreement, a number of Parties have maintained the need to lower the goal to 1.5°C, but particularly those from low lying island states who are justifiably concerned about long term sea level rise. This goal is being voiced more loudly here in Paris. Using the relationship developed by Allen et. al., this implies that 1.5°C would be exceeded if cumulative carbon emissions passed 750 billion tonnes, which could happen as early as 2027. This would imply a massive need for atmospheric CO2 capture and storage over the balance of the century for the simple reason that cumulative emissions could not be contained to such a level by energy system reductions alone.

More recently the concept of net zero emissions (NZE) has emerged. This is the point in time at which there is no net flow of anthropogenic carbon dioxide into the atmosphere; either because there are no emissions at all or if emissions remain because they are completely offset with a similar uptake through carbon capture and storage or reforestation and soil management. Emissions are likely to remain for a very long time in sectors such as heavy transport, industry and agriculture. NZE has been closely linked to 2°C, but in fact any temperature plateau, be it 1.5°C or even 4°C requires NZE. If not, warming just continues as atmospheric CO2 levels rise. There is now a discussion as to when NZE should be reached – as early as 2050 (but practicality must be a consideration), or perhaps by the end of the century. However, what is actually important is the area under the emissions curve before NZE is achieved, less the area under the curve after it is reached, assuming emissions trend into negative territory with technologies such as direct air capture or bioenergy with carbon capture and storage (DACCS or BECCS). The date at which NZE is reached is important, but not necessarily an indicator of the eventual rise in temperature. Just to complicate matters further, although the world needs to achieve NZE eventually, it may be the case that net anthropogenic emissions do not have to be zero by 2050 or 2100 to meet the 2°C  goal because of carbon removal arising from natural sinks in the oceans and terrestrial ecosystems.

Other proposals put forward by Parties and some observers simply call for an urgent peaking of emissions. This is important as well, but again it doesn’t tell the full story. What happens after the emissions peak is critical. A long slow decline to some plateau would be positive, but unless that plateau is close to NZE, then cumulative emissions continue to build, along with the associated warming. Other proposals argue for emissions to be at some reduced level by 2050, which presumes a certain follow-on trajectory equating to 2°C or thereabouts.

Where the Parties land in this discussion remains to be seen, but with only days left and the complexity of goal setting becoming apparent, this may end up being an issue for the years ahead rather than one that can be fully resolved in Paris in a week. 2°C may have to do for now.

Emission pathway

 

As COP21 starts and the negotiators face the task of reaching an agreement, one of the most important points of discussion will be the review and recalibration of INDCs. Many organisations, including some business based ones (i.e. We Mean Business), are arguing for a five yearly review of the national contributions. If strictly adopted, this might mean that the first round of INDCs are already under review before they formally commence (i.e. 2020), such that the global emissions outcome by 2025 is already lower than current INDC projections would project. An alternative is a 10 year review, such that the first deviation from current INDC projections becomes apparent in the early 2030s.

There are practical considerations associated with this. Many who view the energy industry from the outside have consistently had expectations for rapid change. For example, the UNFCCC itself has continued with its pre-2020 workstream even as the time for meaningful change has diminished. This isn’t to argue that nothing can happen between now and 2020, but it is unlikely that much extra can now happen in that time frame. The energy industry is built on long lead times, project cycles that can stretch out to a decade and capital cycles that are often laid out years in advance of actual spending. Sometimes this can be disrupted, particularly when there is a sudden shift in market price structure, but that is not the normal pattern of change.

There is also the reality of policy development timelines needed to trigger change. For example, the EU is in the midst of a three year (at least) examination of the climate and energy needs for the period 2020 to 2030, which requires green papers, white papers, various stakeholder consultations, draft legislation, parliamentary committee discussion, a parliamentary vote, Member State agreement and transfer to national legislation. It is unlikely that this would be revised as soon as 2018-2021 having just reached agreement on the entire package in 2016 and finalised EU wide adoption in 2017. The institutional capacity may not exist for constant revision.

But there is an overriding thought which should take priority – the emissions and therefore eventual temperature impact of moving to a more aggressive review timetable. It is very clear that the current round of INDCs do not deliver a 2°C pathway – many analysts and the UNFCCC have concluded that. The INDCs also say little to nothing about the past 2030 period, so future INDCs or review of current INDCs will be needed.

A relatively basic analysis can give some insight as to the climate value of review and the benefit of conducting that on a five year basis or a ten year timetable. I put this together as outlined below;

  • There isn’t really a clear emissions trajectory for the current round of INDCs, at least not after 2030. For the purposes of this analysis I have assumed that they result in peaking of global emissions in the 2030s, followed by the beginnings of a decline to 2040 and beyond. Some would argue that even this is optimistic.
  • The 2°C pathway reaches net-zero emissions in about 2080, then enters a period of negative emissions through the use of a technology such as BECCS (biomass energy with carbon capture and storage).
  • In the case of a five year correction process, I assumed that every five years the UNFCCC looks at progress against a 2°C pathway (which of course will change over time, but I haven’t got into that detail) and after each new round of submissions the INDC pathway, as it would be at that point in time, shifts a quarter of the way further towards the 2°C pathway. The result is an emissions trajectory that starts to deviate from the current INDC pathway by 2025.
  • In the case of the ten year correction process, the same happens but on a ten year cycle, with the intervening five year period declining at the same rate as the previous five year period. Because of the slower turnaround in the process, I also assumed that after a more protracted INDC discussion, the shift in the pathway is relative to the 2°C line as it was five years earlier, rather than at the time. As such, there is a bit more lag built into the process and emissions remain the same as the current INDC pathway until after 2030.

INDC Review Pathways

  • The chart above shows the four potential pathways; 2°C, the current INDCs extended out for several decades and the corrected pathways, based on five year and ten year correction cycles.

As shown, the uncorrected INDC pathway is a 3+°C scenario, whereas both the five year and ten year correction pathways are about 2.5°C and both arrive at a net zero emissions outcome around the turn of the century. As such, it is clear that a review cycle can change everything and has the potential to deliver a clear outcome rather than an open ended emissions tail stretching well into the 22nd century.

But the difference between them is 0.15°C, or a cumulative 280 million tonnes of CO2 over the balance of the century. While this is not insignificant, the more important goal for the negotiators should be to agree a clear review and recalibration process, rather than be too focussed on the precise timeliness of it.

One million tonnes of CO2

The first week of November sees Shell officially open its first major carbon capture and storage (CCS) facility, the Quest project. It is in Alberta, Canada and will capture and store about one million tonnes of carbon dioxide per annum. Construction commenced back in September 2012 when the Final Investment Decision (FID) was taken and the plant started up and began operating for the first time in September of this year, just three years later. It is one of only a handful of fully integrated carbon capture and storage facilities operating globally. There are now many facilities that capture CO2 but mainly linked to Enhanced Oil Recovery which provides an income source for these projects.  Quest has dedicated CO2 storage, developed in an area some 65 kms from the capture site at a depth of about 2 kms.

Quest Construction

The Quest income source is not based on EOR; it has been able to take advantage of the government implemented carbon price that prevails within Alberta. Although the current carbon pricing mechanism has an effective ceiling of $15 per tonne CO2 which isn’t sufficient for CCS, let alone a first of its kind, it nevertheless provides a valuable incentive income to operate the facility which has been built on the back of two substantial capital grants from the Provincial and Federal governments respectively. A supplementary mechanism also in place in Alberta provide credits related to the carbon price mechanism for the early years of a CCS project, providing additional operating revenue for any new facility.

Canada, as it turns out, has become a global leader in CCS. The Quest facility is the second major project to be started up in Canada is as many years, with the Saskpower Boundary Dam project commencing operations this time last year.

As noted, Quest will capture and store approximately one million tonnes of carbon dioxide per annum. It demonstrates how quickly and efficiently large scale CO2 management can be implemented once the fiscal conditions are in place. Quest, which is relatively small in scale for an industry that is used to managing gas processing and transport in the hundreds of millions to billions of tonnes globally, demonstrates both the need for continued expansion of the CCS industry and the importance of carbon pricing policy to drive it forward. This single facility far surpasses the largest solar PV facilities operating around the world in terms of CO2 management. Take for example the Desert Sunlight Solar Farm in California, currently the fourth largest solar PV power station in the world. According to First Solar, it displaces 300,000 tonnes of CO2 annually, less than a third of that captured and permanently stored by Quest.

A key difference though is the use of the word displace. Alternative energy projects don’t directly manage CO2, they generate energy without CO2 emissions. But, as I have noted in previous postings and in my first book, the release of fossil carbon to the atmosphere is more a function of energy prices and resource availability. This means that even when a project like Desert Sunlight operates, the CO2 it notionally displaces may still be released at some other location or at some other time, depending on long term energy prices and extraction economics. There is no doubt that the CO2 is not being emitted right now in California, but that doesn’t necessarily resolve the problem. Quest, by contrast, directly manages the CO2 from fossil fuel extraction.

The requirement to provide alternative energy (i.e. without CO2 emissions) needs to grow, but we shouldn’t imagine that such action, by itself, will fully resolve the climate issue. That will come through the application of carbon pricing mechanisms by governments, driving the further expansion of both the alternative energy and CCS industries as a result.

A video about the Quest project, made by the constructors, Fluor, is available here.

The last few weeks have seen a flood of Intended Nationally Determined Contributions (INDC) arrive at the UNFCCC offices in Bonn, presumably to be included in the assessment of progress promised by the UNFCCC Secretariat for release well before the Paris COP21.

There are now some 150 submissions and assessing them in aggregate requires some thinking about methodology. For starters, the temperature rise we will eventually see is driven by cumulative emissions over time (with a climate sensitivity of about 2°C per trillion tonnes of carbon – or 3.7 trillion tonnes CO2), not emissions in the period from 2020 to 2025 or 2030 which is the point at which most of the INDCs end. In fact, 2025 or 2030 represent more of a starting point than an end point for many countries. Nevertheless, in reading the INDCs, the proposals put forward by many countries give some clues as to where they might be going.

For Europe, the USA and many developed economies, the decline in emissions is already underway or at least getting started, with most having already said that by mid-century reductions of 70-80% vs. the early part of the century should be possible. But many emerging economies are also giving signs as to their long term intentions. For example, the South Africa INDC proposes a Peak-Plateau-Decline strategy, which sees a peak around 2020-2025, plateau for a decade and then a decline. Similarly, China has clearly signalled a peak in emissions around 2030, although with development at a very different stage in India, such a peak date has yet to be transmitted by that government.

Nevertheless, with some bold and perhaps optimistic assumptions, it is possible to assess the cumulative efforts and see where we might be by the end of the century or into the early part of next century. In doing this I used the following methodology;

  1. Use an 80/20 approach, i.e. assess the INDCs of the top 15-20 emitters and make an assumption about the rest of the world. My list includes USA, China, India, Europe, Brazil, Indonesia, South Africa, Canada, Mexico, Russia, Japan, Australia, Korea, Thailand, Taiwan, Iran and Saudi Arabia. In current terms, this represents 85% of global energy system CO2 emissions.
  2. For the rest of the world (ROW), assume that emissions double by 2040 and plateau, before declining slowly throughout the second half of the century.
  3. For most countries, assume that emissions are near zero by 2100, with global energy emissions nearing 5 billion tonnes. The majority of this is in ROW, but with India and China still at about 1 billion tonnes per annum each, effectively residual coal use.
  4. Cement use rises to about 5 billion tonnes per annum by mid-century, with abatement via CCS not happening until the second half of the century. One tonne of cement produces about half a tonne of process CO2 from the calcination of fossil limestone.
  5. Land use CO2 emissions have been assessed by many organisations, but I have used numbers from Oxford University’s trillionthtonne.org spreadsheet, which currently puts it at some 1.4 billion tonnes per annum of carbon (i.e. ~5 billion tonnes CO2). Given the INDC of Brazil and its optimism in managing deforestation, I have assumed that this declines throughout the century, but still remains marginally net positive in 2100.
  6. I have not included short lived climate forcers such as methane. These contribute more to the rate of temperature rise than the eventual outcome, provided of course that by the time we get to the end of the century they have been successfully managed.
  7. Cumulative emissions currently stand at 600 billion tonnes carbon according to trillionthtonne.org.

The end result of all of this are the charts below, the first being global CO2 emissions on an annual basis and the one below that being cumulative emissions over time. The all important cumulative emissions top out just below 1.4 trillion tonnes carbon.

Global CO2 Emissions Post INDC

Global Cumulative Emissions post INDCs

The trillionth tonne point, or the equivalent of 2°C, is passed around 2050, some 11 years later than the current end-2038 date indicated on the Oxford University website. My end point is the equivalent of about 2.8°C, well below 4+°C, but not where it needs to be. The curve has to flatten much faster than current INDCs will deliver, yet as emissions accumulate, the time to do so is ticking away.

Even with a five year review period built into the Paris agreement, can the outcome in 2030 or 2035 really be significantly different to this outlook? Will countries that have set out their stall through to 2030 actually change this part way through or even before they have started along said pathway? One indication that they might comes from China, where a number of institutions believe that national emissions could peak well before 2030. However, the problem with accumulation is that history is your enemy as much as the future might be. Even as emissions are sharply reduced, the legacy remains.

Nevertheless, we shouldn’t feel hopeless about such an outcome. Last week I was at the 38th Forum of the MIT Joint Program on the Policy and Science of Global Change and I was reminded again during one of the presentations of their Level 1 to Level 4 mitigation outcomes which I wrote about in my first book, 2°C Will Be Harder than we Think. These are shown below.

Shifting the Risk Profile

Taking no mitigation action at all results in a potential temperature distribution with a tail that stretches out past 7°C, albeit with a low probability. However, we can’t entertain even a low probability of such an outcome, so some level of mitigation must take place. While Level 1 remains the goal (note however that the MIT 2°C is not above pre-industrial, but relative to 1981-2000), MIT have shown that lesser outcomes remove the long tail and contain the climate issue to some extent. The INDC analysis I have presented is similar to Level 2 mitigation, which means the Paris process could deliver a very substantial reduction in global risk even if it doesn’t equate to 2°C. More appreciation of and discussion around this risk management approach is required, rather than the obsession with 2°C or global catastrophe that many currently present.

Of course, extraordinary follow through will be required. Each and every country needs to deliver on their INDC, many of which are dependent on very significant financial assistance. I looked at this recently for Kenya and India. Further, the UNFCCC process needs its own follow through to ensure that global emissions do trend towards zero throughout the century, which remains a very tall order.

Assessing the INDCs

  • Comments Off on Assessing the INDCs

It is now just 100 days until COP21 in Paris.

The summer months have seen many Intended Nationally Determined Contributions (INDCs) submitted to the UNFCCC prior to the assessment deadline of October 1st. This is the date when the UNFCCC secretariat will start work on a synthesis report on the aggregate effect of the INDCs as communicated by Parties. Many organisations are already offering assessments of progress, with most basing this on reductions through to 2030 against a notional 2°C pathway.

However, the climate system doesn’t care about 2030 nor does it respond to changes in annual emissions. The real metric is cumulative emissions over time, with each trillion tonnes of carbon released into the atmosphere equivalent to about 2°C rise in temperature rise (this isn’t precisely linear, but it is a reasonable rule of thumb to use). This means that any assessment must look well beyond 2030 and make some bold assumptions as to where the emissions pathways then go. It also means that the wide variety of pledges using metrics such as the share of renewable energy in the power generation mix, installed solar capacity or emissions per GDP, whilst important in the context of energy system development, offer limited insight into the trend for cumulative emissions.

A good example of this comes from looking at the INDC from China. They have pledged the following;

  • To achieve the peaking of carbon dioxide emissions around 2030 and making best efforts to peak early;
  • To lower carbon dioxide emissions per unit of GDP by 60% to 65% from the 2005 level;
  • To increase the share of non-fossil fuels in primary energy consumption to around 20%; and
  • To increase the forest stock volume by around 4.5 billion cubic meters on the 2005 level.

From an energy emissions context, only the first part of this pledge is really important, but little information is given allowing an assessment of its real impact on the climate system. Some big assumnptions will have to be made.

According to the Oxford Martin School carbon emissions counter, global cumulative emissions now stand at nearly 600 billion tonnes of carbon (2.2 trillion tonnes CO2). Back in November 2014 when China and the USA announced their climate deal, I speculated that the Chinese side of the Sino-US deal could see their emissions rising to as much as 14.5 billion tonnes CO2 per annum by 2030 based on the following assumption;

The USA and China appear to have adopted a “Contraction and Convergence” approach, with a goal of around 10 tonnes CO2 per capita for 2030, at least for energy related emissions. For China this means emissions of some 14.5 billion tpa in 2030, compared with the latest IEA number for 2012 of 8.3 billion tonnes, so a 75% increase over 2012 or 166% increase over 2005. It also has China peaking at a level of per capita CO2 emissions similar to Europe when it was more industrial, rather than ramping up to the current level of say, the USA or Australia (both ~16 tonnes). By comparison, Korea currently has energy CO2/capita emissions of ~12 tonnes, so China peaking at 10 is some 17% below that.

Of course China could still peak at lower levels than this and the economic downturn they currently seem to be facing may ensure this. Nevertheless, two reduction pathways following 2030 give a very different cumulative outlook for the period 2015-2100. It is this cumulative outcome that matters, not where China might happen to find itself in 2030. While the period up to 2030 is important, it only tells a fraction of the story. Chinese emissions over that period will likely add some 50 billion tonnes of carbon to the global cumulative total, but this is small compared to their potential remaining cumulative contribution (i.e, before they are at net-zero emissions). The two pathways below illustrate the difference;

  1. A plateau for about a decade, followed by a long slow reduction through to near zero by 2100 means cumulative emissions from 2015 are around 800 billion tonnes of CO2, or 220 billion tonnes of carbon. In this scenario, Chinese emissions alone take the global carbon emissions total to 820 billion tonnes.
  2. A sharp decline from 2030 to zero before 2080 gives cumulative emissions of 550 billion tonnes, or 150 billion tonnes carbon. In this case the global total rises to 750 billion tonnes carbon based on Chinese emissions alone.

Either way, China will have a profound impact on global cumulative emissions. But this fairly simple analysis illustrates that the period from 2030 onwards is where the real story lies, which to date isn’t covered by any of the INDC submissions. For a 2°C outcome, even the lower of the two scenarios above leaves little carbon space for the remaining 7+ billion people living on the planet throughout the 21st century.

Impact of Chinese Cumulative Emissions

Who knew what and when?

A recent article in the Guardian, which was also carried through a number of other media outlets, implied some prior knowledge within the oil and gas industry of climate change and the impact of carbon dioxide emissions from fossil fuel use long before others had recognised its impact. The assertion was based on unearthed correspondence within Exxon where carbon dioxide emissions were discussed as early as 1981. The article goes on to say that “Climate change was largely confined to the realm of science until 1988, when the climate scientist James Hansen told Congress that global warming was caused by the buildup of greenhouse gases in the atmosphere, due to the burning of fossil fuels.”

In fact, information about the role of carbon dioxide as a greenhouse gas in the atmosphere has been widely available for over a century and has its foundation as far back as the early 19th Century, nearly 200 years ago. At that time, physicists were coming to terms with radiation physics and were attempting to understand why the Earth had a stable temperature. Knowing the energy falling on the planet from the Sun and after building an understanding of the radiation outwards from the Earth itself, the expected temperature of the planet could be derived. Unfortunately the calculation resulted in a number of somewhere around -15°C, which was clearly some 30°C lower than the observed temperature (about +15°C). Something else was in play, but at the time this was unclear. By 1862, an understanding of the role of certain gases in the atmosphere had been established, now more widely known as the “greenhouse effect”.

In 1896, Swedish chemist Svante Arrhenius used this information for a paper on the role of carbon dioxide that remains the foundation of 120 years of analysis of the Earth’s temperature and resulting climate (On the Influence of Carbonic Acid in the Air upon the Temperature of the Ground).

Arrhenius

In this paper Arrhenius established a methodology for linking the change in surface temperature with the change in the level of carbon dioxide (carbonic acid as he referred to it as) in the atmosphere. Table VII of the paper showed the results of his calculation for different levels of carbon dioxide in the atmosphere ranging from K=0.67 (where K=1 for the level at the time) to K=3.0. For the latitude of the equator he derived the following results;

Carbonic acid = 0.67 Carbonic acid = 1.5 Carbonic acid = 2.0 Carbonic acid = 2.5 Carbonic acid = 3.0
Temperature change at Latitude 0° -3.02°C 3.15°C 4.95°C 6.42°C 7.3°C

The Arrhenius paper discusses the work of a Professor Högblom, another Swedish scientist of the day, who had even calculated how much the burning of coal at that time (500 million tonnes per annum) might change the surface temperature of the planet. The number was very small, but today annual fossil carbon extraction is some twenty to thirty times greater than this and more importantly the cumulative extraction (which we now know is what actually matters) since the late 19th century is hundreds of time this level.

By the late 1950s, thanks to the work of Charles Keeling of Scipps Institution of Oceanography in California, accurate measurements of atmospheric carbon dioxide were being made. In 1961, Keeling produced data showing that carbon dioxide levels were rising steadily in what became known as the “Keeling Curve”. In 1965, the first truly public warning as to the impact of rising levels of carbon dioxide in the atmosphere came from the President’s Science Advisory Committee (President Lyndon B. Johnson), with the words “Through his worldwide industrial civilization, Man is unwittingly conducting a vast geophysical experiment. . . . . This may be sufficient to produce measurable and perhaps marked changes in climate, and will almost certainly cause significant changes in the temperature and other properties of the stratosphere.

There have been many other such references and warnings, ranging from the 1988 testimony to Congress by NASA scientist James Hansen to Al Gore’s film Inconvenient Truth in 2006. Through all of these the story hasn’t really changed from the original calculations of Arrhenius in 1894, rather the understanding and methodology has been increasingly refined and improved.

The above timeline isn’t new and can be found in much more detail in many books, blogs and periodicals. Nor is it even close to comprehensive, with dozens of other scientists and institutions making important contributions to the early analysis, particularly in the 1950s. Nevertheless, it seems to need repeating. Although atmospheric warming may not have been a dinner table conversation in the 1980s, it wasn’t a secret either. A look at the use of the phrases “greenhouse effect”, “global warming” and “climate change” shows that they appeared in books in the 1970s.

Ngram

Nor was it largely confined to the realm of science. Hollywood had even picked up on the issue in the 1973 film Soylent Green, where the greenhouse effect is specifically mentioned and is to some extent a core issue in the dystopian future that is postulated.

Soylent Green

Rather, what is unusual about the climate issue is the present day questioning of the background science that has come some 100-200 years after the scientific basis was first formulated and largely established, rather than at the time. In my forthcoming book, “Carbon Pricing Matters”, I touch on this issue as follows;

The need to manage global emissions and put a halt to the relentless build-up of carbon dioxide in the atmosphere requires the intervention of governments and cooperation between them to ensure their success; particularly when implemented through a cost on carbon dioxide emissions. There is an ongoing debate around the role of government and the degree to which it should be allowed to address the issue of global warming. There are many who believe that government should have only a modest role in society; others accept a much wider role, including one to solve broad-based issues that affect society at large, for example, the build-up of carbon dioxide in the atmosphere. For the latter group, a carbon price may not go far enough; it is a tool designed to tease out the solution over a generation or more. In the case of those who seek to limit the role of government, the imposition of a pricing mechanism across the entire economy can be seen as a step too far and may even raise questions about the foundation upon which the mechanism is based; the science of climate change.