At the end of last week (May 15th) Canada submitted its Intended Nationally Determined Contribution (INDC) to the UNFCCC, becoming the 37th state to do so (including 28 countries within the EU). The three key points of the Canadian INDC submission are:

  • An emissions reduction pledge of 30% below 2005 levels by 2030 (the US has pledged a target of 26-28% below 2005 levels by 2025);
  • The reduction will be economy-wide and will cover all GHGs recognized under the UNFCCC;
  • Canada “may also use international mechanisms to achieve its target, subject to robust systems that deliver real and verified emissions reductions.”

This means that substantial progress is being made towards a good coverage of INDC submissions by the time of the Paris COP, although many eyes will now be turning to the emerging economies (e.g. China, India, Brazil, South Africa, Chile, Saudi Arabia etc.) for the real signal with regards tackling global emissions. Mexico has made a good start in that regard.

In just two weeks the national negotiators will meet again, this time in Bonn, to continue their deliberations in the lead up to COP21. But is the process in good shape?

Compared to this time in 2009 with the Copenhagen COP looming, I think it is in better shape. Although there are many details to be agreed, the negotiators at least know what it is they are trying to agree on; a relatively lean framework within which can sit the collection of INDCs from all countries for scrutiny and review. It has taken many years to get to this point and the process is far from complete, but the task at hand is now clear even though many will argue that it won’t be sufficient to deliver the goal to limit warming of the climate system to less than 2°C. At least there is thematic consensus which I don’t think existed in May 2009; was it to be top down or bottom up, what would happen to the Kyoto Protocol, should there be a global goal on temperature rise? These and many other questions were still in play.

Looking back on some of my first year of blog posts which were written in 2009, it was all very different.

  • Many eyes were on the deliberations of the US House of Representatives and the Waxman-Markey cap-and-trade Bill, with every expectation that the USA would take the lead on establishing a carbon price. Today, those eyes are on the world’s largest emitter, China, as it proceeds with its carbon pricing provincial trials and expansion to a nationwide system.
  • It wasn’t until the June 2009 UNFCCC meeting that the team from the Oxford University Department of Physics first presented their new thinking on a global carbon emissions limit of 1 trillion tonnes over the industrial era; now negotiators are actually considering the concept of net-zero emissions and therefore an end date to the ongoing accumulation of carbon dioxide in the atmosphere.
  • The British government produced a first of its kind report on the idea of global carbon trading. In some respects not much has changed, but the discussion has matured and the likes of the World Bank are now taking this concept forward. A linked market even exists between California and Quebec.
  • In July 2009 I came across the first electric vehicle charging stations in London and met a person who was taking delivery of the seventh Tesla in the UK. In 2014 there were 15,000 EV and PHEV newly registered and right now on AutoTrader there are 10 used Tesla cars for sale!!
  • The UNFCCC negotiations were operating on two tracks, the Kyoto Protocol (KP) and Long term Cooperative Action (LCA), with no real sign of them coming together.
  • There was little consensus on climate finance; today the Green Climate Fund has been established and there is an active process underway to start disseminating the initial developed country funding.
  • There was little sign of targets and goal setting from the major developing countries; today China has indicated a plateau in emissions by around 2030 and other countries are following their lead.

In hindsight it isn’t surprising that all of these issues were not resolved by the following December. The goals for Paris may not be as lofty as those for Copenhagen, but at least from the perspective of a mid-year review they appear more achievable. It’s been a few months since I have added a piece to my “Paris Puzzle”, but it is perhaps timely to do this now.

Jigsaw May 2015

In a world of near zero anthropogenic emissions of carbon dioxide, there remains the problem of finding a fuel or energy carrier of sufficiently high energy density that it remains practical to fly a modern jet aeroplane. Commercial aviation is heading towards some 1 billion tonnes of carbon dioxide per annum so doing nothing may not be an option.

Although planes will certainly evolve over the course of the century, the rate of change is likely to be slow and particularly so if a step change in technology is involved. In 100 years of civil aviation there have been two such step changes; the first commercial flights in the 1910s and the shift of the jet engine from the military to the commercial world with the development of the Comet and Boeing 707. The 787 Dreamliner is in many respects a world away from the 707, but in terms of the fuel used it is the same plane; that’s 60 years and there is no sign of the next change.

Unlike domestic vehicles where electricity and batteries offer an alternative, planes will probably still need hydrocarbon fuel for all of this century, perhaps longer. Hydrogen is a possibility but the fuel to volume ratio would change such that this could also mean a radical redesign of the whole shape of the plane (below), which might also entail redesign of other infrastructure such as airport terminals, air bridges and so on. Even the development and first deployment of the double decker A380, something of a step change in terms of shape and size, has taken twenty years and cost Airbus many billions.

h2airplane

For aviation, the simplest approach will probably be the development of a process to produce a look-alike hydrocarbon fuel. The most practical way to approach this problem is via an advanced biofuel route and a few processes are available to fill the need, although scale up of these technologies has yet to take place. But what if the biofuel route also proves problematic – say for reasons related to land use change or perhaps public acceptance in a future period of rising food prices? A few research programmes are looking at synthesising the fuel directly from water and carbon dioxide. This is entirely possible from a chemistry perspective, but it requires lots of energy; at least as much energy as the finished fuel gives when it is used and its molecules are returned to water and carbon dioxide.

Audi has been working on such a project and recently announced the production of the first fuel from their pilot plant (160 litres per day). According to their media release;

The Sunfire [Audi’s technology partner] plant requires carbon dioxide, water, and electricity as raw materials. The carbon dioxide is extracted from the ambient air using direct air capture. In a separate process, an electrolysis unit splits water into hydrogen and oxygen. The hydrogen is then reacted with the carbon dioxide in two chemical processes conducted at 220 degrees Celsius and a pressure of 25 bar to produce an energetic liquid, made up of hydrocarbon compounds, which is called Blue Crude. This conversion process is up to 70 percent efficient. The whole process runs on solar power.

Apart from the front end of the facility where carbon dioxide is reacted with hydrogen to produce synthesis gas (carbon monoxide and hydrogen), the rest of the plant should be very similar to the full scale Pearl Gas to Liquids (GTL) facility that Shell operates in Qatar. In that process, natural gas is converted to synthesis gas which is in turn converted to a mix of longer chain hydrocarbons, including jet fuel (contained within the Audi Blue Crude). The Pearl facility produces about 150,000 bbls/day of hydrocarbon product, so perhaps one hundred such facilities would be required to produce enough jet fuel for the world (this would depend on the yield of suitable jet fuel from the process which produces a range of hydrocarbon products that can be put to many uses). Today there are just a handful of gas-to-liquids plants in operation; Pearl and Oryx in Qatar, Bintulu in Malaysia and Mossel Bay in South Africa (and another in South Africa that uses coal as the starting feedstock). The final conversion uses the Fischer Tropsch process, originally developed about a century ago.

Each of these future “blue crude” facilities would also need a formidable solar array to power it. The calorific content of the fuels is about 45 TJ/kt, so that is the absolute minimum amount of energy required for the conversion facility. However, accounting for efficiency of the process and adding in the energy required for air extraction of carbon dioxide and all the other energy needs of a modern industrial facility, a future process might need up to 100 TJ/kt of energy input. The Pearl GTL produces 19 kt of product per day, so the energy demand to make this from water and carbon dioxide would be 1900 TJ per day, or 700,000 TJ per annum. As such,  this requires a nameplate capacity for a solar PV farm of about 60 GW – roughly equal to half the entire installed global solar generating capacity in 2013. A Middle East location such as Qatar receives about 2200 kWh/m² per annum, or 0.00792 TJ/m² and assuming a future solar PV facility that might operate at 35% efficiency (considerably better than commercial facilities today), the solar PV alone would occupy an area of some 250 km² , so perhaps 500 km² or more in total plot area (i.e. 22 kms by 22 kms in size) for the facility.

This is certainly not inconceivable, but it is far larger than any solar PV facilities in operation today; the Topaz solar array in California is on a site 25 square kms in size with a nameplate capacity of 550 MW.  It is currently the largest solar farm in the world and produces about 1.1 million MWh per annum (4000 TJ), but the efficiency (23%) is far lower than my future assumption above. At this production rate, 175 Topaz farms would be required to power a refinery with the hydrocarbon output of Pearl GTL. My assumptions represent a packing density of solar PV some four times better than Topaz (i.e. 100 MW/km² vs 22 MW/km²).

All this means that our net zero emissions world needs to see the construction of some 100 large scale hydrocarbon synthesis plants, together with air extraction facilities, hydrogen and carbon monoxide storage for night time operation of the reactors and huge solar arrays. This could meet all the future aviation needs and would also produce lighter and heavier hydrocarbons for various other applications where electricity is not an option (e.g. chemical feedstock, heavy marine fuels). In 2015 money, the investment would certainly run into the trillions of dollars.

Recent news from the International Energy Agency (IEA) has shown that the rise in global CO2 emissions from the energy system stalled in 2014. This was unusual on two counts – first that it happened at all and second that it happened in a year not linked with recession or low economic growth as in 1992 and 2009. In fact the global economy expanded by about 3%.

Information is scant at this point, but the IEA have apparently determined this using their Sectoral Approach (below, through to 2014), which has been flattening for a few years relative to their Reference Approach (following chart, ends at 2012). The Reference Approach and the Sectoral Approach often have different results because the Reference Approach is top-down using a country’s energy supply data and has no detailed information on how the individual fuels are used in each sector. One could argue that the Reference Approach is more representative of what the atmosphere sees, in that apart from sequestered carbon dioxide and products such as bitumen, the whole fossil energy supply eventually ends up as atmospheric carbon dioxide. The Reference Approach therefore indicates an upper bound to the Sectoral Approach, because some of the carbon in the fuel is not combusted but will be emitted as fugitive emissions (as leakage or evaporation in the production and/or transformation stage). No information has been provided by the IEA at this point as to the Reference Approach data for 2013 and 2014.

Global Energy System Emissions

Reference vs. Sectoral IEA

Putting to one side this technical difference, the flattening trend does represent a possible shift in global emissions development and it has certainly got many observers excited that this may well be so. If this is the case, what is driving this change and what might the outlook be?

It is clear that many governments are now intervening in domestic energy system development. There are incentives and mandates for renewable energy, enhanced efficiency programmes and some level of carbon pricing in perhaps a quarter of the global energy system, albeit at a fairly low level. More recently in China there has been a strong government reaction to air quality issues, which has given rise to some reduction in coal demand, particularly around major cities. But there is another factor as well and that is price – it is perhaps the overwhelming factor in determining fossil fuel usage and therefore setting the level of emissions. Price drives conservation, efficiency, the use of alternatives and therefore demand. Many of the aforementioned energy policy initiatives have been implemented during the recent decade or so of sharply rising energy prices.

A chart of the oil price (2013 $, as a proxy for energy prices) and global CO2 emissions going back to 1965 illustrates that big price fluctuations do seem to have an impact on emissions. Although emissions have risen throughout the period, sharp energy price excursions have led to emissions dips and plateaus as energy demand is impacted and similarly, price falls have led to resurgence in emissions. This isn’t universally true – certainly from 2004 to 2008 the very strong demand from China in particular was seemingly unaffected by the rising cost of energy, although the end of that period saw a global recession and a very visible dip in demand.

Oil price vs. Emissions

The latter part of 2014 brought with it a sharp reduction in energy prices (2015 is illustrative in the chart at $55 per barrel). With a much lower fossil energy price, demand may rise and the incentive for efficiency and the deployment of alternatives could well be impacted, although there may be some lag before this becomes apparent. The combination of these factors could therefore see emissions take yet another jump, but it is too early to see this in the data. 2015 emissions data might show the first signs of this.

There is of course continued upward pressure on emissions as well, such as the growth in coal use that is now underway in India. Over the three year period to the end of 2014, coal capacity increased from 112 GW to nearly 160 GW. This is the equivalent of some 300 million tonnes of CO2 per annum. By contrast, a five year period from 2002 to 2007 saw only 10 GW of new coal capacity installed in that country. Although India is installing considerable solar capacity, coal fired generation is likely to continue to grow rapidly. One area of emissions growth that is not being immediately challenged by a zero emissions alternative is transport. The automobile, bus, truck and aviation fleets are all expanding rapidly in that country.

The other big uncertainty is China, where local air quality concerns are catalysing some restructuring in their energy system. Certain factories and power plants that are contributing most to the local problems around cities such as Beijing and Shanghai are being shut, but there is still huge development underway across vast swathes of the country.  Some of this is a replacement for the capacity being closed around the cities, with electricity being transported through ultra high voltage grids that now run across the country. Gas is becoming a preferred fuel in metropolitan areas, but some of that gas is being synthetically produced from coal in other regions – a very CO2 intensive process. The scale of this is limited at the moment, but if all the current plans are actually developed this could become a large industry and therefore a further signifacnt source of emissions.

As observers look towards Paris and the expectation of a global deal on climate, the current pause in emissions growth, while comforting, may be a false signal in the morass of energy system data being published. Ongoing diligence will be required.

For Earth Day

  • Comments Off on For Earth Day

All the air in the atmospere but at surface conditions:

All-the-air-High-Res

All the CO2 emitted in one day:

_0015_Frame3993-CO2-960x540px

Courtesy Carbon Visuals

As the World Bank and others ramp up the discussion on carbon pricing, heads are turning towards Paris with thoughts on how the issue will be incorporated into the expected COP21 global climate deal. I have said many times in the past that unless a carbon price makes its way into the whole global energy system, then its success in bringing down emissions is far from assured. While local carbon pricing wins will appear, the global effort could be undermined by a lack of global coverage.   This is true of other policy approaches as well, but in the case of carbon pricing there is the significant benefit of economic efficiency.  For me, the signs so far aren’t great, with the text that came out of the Geneva ADP meeting showing few signs of tackling this important issue.

In recent weeks I have heard some commentators and national climate negotiators argue that the Framework Convention itself is sufficient to underpin cooperative carbon market development and that all the COP21 deal needs is a framework to ensure that accounting of carbon based trades is robust and avoids issues such as double counting (two parties each counting a particular reduction under their own emissions inventory). The underpinning language within the Convention can be found in several places (examples below), but the references are oblique and without direct recognition of carbon pricing or carbon markets;

  • Efforts to address climate change may be carried out cooperatively by interested Parties;
  • These Parties may implement such policies and measures jointly with other Parties and may assist other Parties in contributing to the achievement of the objective of the Convention;
  • Coordinate as appropriate with other such Parties, relevant economic and administrative instruments developed to achieve the objective of the Convention;

While this language could be interpreted as a mandate to develop a global carbon market and the ensuing exchange of carbon pricing instruments between Parties, or companies within the jurisdiction of those Parties, it hardly encourages this process to take place, let alone become a key activity in implementing a global deal. Similarly, if a Paris deal just addresses accounting issues, I don’t believe that this will act as the necessary catalyst for carbon market development either. It’s a bit like agreeing how to calculate the GDP and then not opening the national mint to print and issue the currency!!

Looking back at the Kyoto Protocol, the Clean Development Mechanism provides some valuable learning. While it isn’t a comprehensive carbon pricing instrument the Protocol nevertheless catalysed its development with a few paragraphs of text, to the extent that it eventually pushed some $100 billion (some have estimated much higher levels) in project investment into various developing country economies. This far eclipses the $10 billion that has so far been pledged to the Green Climate Fund, clearly demonstrating that market based approaches will almost always outstrip direct public financing or funding.    To meet the developed countries’ commitment to mobilize $100bn per annum by 2020, it is clear that carbon market approaches including linking will be required.  It is difficult to see how it will be met without incentivizing the private sector in this way.

This is the sort of step that I think the negotiators in Paris need to take. Rather than just elaborating on core accounting principles, I believe that they need to incorporate a means of actively encouraging carbon market expansion. Given the nationally determined contribution based architecture that is emerging, such a development will probably be a bottom up process, perhaps with heterogeneous linking between various market based systems. The Harvard Kennedy School are offering valuable insight into how this might transpire.

One organisation, IETA, has put forward a proposal for Paris along these lines. It is a light touch approach, given the opposition that a real carbon market proposal seems to foster, but hopefully it will be enough to get things started. The IETA proposal calls for the development of a “unified international transfer system”, in effect a “plug-and-play” linkage approach for national trading systems. With wording along these lines in the Paris agreement, later COP decisions could establish the modalities for such a system, thus opening up and accelerating the process that the likes of California and Quebec went through to link their respective trading systems. Such modalities would include the common accounting framework that is needed irrespective of the approach taken to encourage the development of a global market. In all cases, accounting still remains central to progress.

I won’t claim that this is the quickest and most effective way forward, but it is where we are and probably the best that can be achieved, assuming the push from above is there to encourage it. Without such a push, we are all left to hope that something may transpire on carbon markets, but wishful thinking isn’t a solution to 2°C.

Baselines, metrics and business as usual

  • Comments Off on Baselines, metrics and business as usual

The submission of Intended Nationally Determined Contributions (INDCs) to the UNFCCC started in earnest to meet the March 31st agreed date, although many more are still to come. Mexico was the only non-Annex I country (under the Convention) to submit by this date, although the Gabon submission appeared the following day.

A feature of the Mexico submission is the reference to Business as Usual (BAU) as a metric against which to measure progress. Although Mexico is clear on its commendable absolute long term objective, i.e. “. . . . consistent with Mexico´s pathway to reduce 50% of emissions by the year 2050, with respect to the year 2000”, its shorter term progress will be guided by reference to a “Business As Usual scenario of emission projections based on economic growth in the absence of climate change policies, starting from 2013”. The reference to Business As Usual is a factor that we will likely see in many of the upcoming INDC submissions. BAU was also a feature of many Copenhagen pledges, but in several instances the BAU pathway was hard to discern, which made the pledge difficult to understand and rather opaque in terms of actual numbers and therefore effort. This time around numbers will have to be very clear and part of the scrutiny and review process that negotiators are working towards will need to address the credibility and transparency of the BAU reference. In the case of Mexico, the BAU is well documented.

But even when the numbers are published, a BAU reference can make pledges and actions taken appear far more ambitious than may be the case. This is particularly so when energy efficiency is claimed as a major contributor to supposed reductions in emissions. Based on an existing relationship between energy and GDP and assuming a given near-term growth in economic output, it is easy to project what BAU emissions might be in 2020 or 2030 and then argue that a focus on energy efficiency can reduce this, effectively claiming an emissions reduction. This reasoning would appear to show that the country in question is making a large contribution to the global effort and that energy efficiency is an important contributing factor to change, yet in reality the original projection represents a situation that may never have occurred. Business-as-usual also requires improvements in energy efficiency to drive growth, which means that the assumed growth may not have occurred, had the efficiency improvements not helped deliver it. If energy efficiency really is a route to lower emissions, then it needs to pass one clear test, i.e. which known fossil fuel resource will be left in the ground (or a proposed extraction project shelved) because of this? Only then are cumulative emissions potentially impacted.

The Mexico INDC also highlighted a propensity to mix together actions on long lived greenhouse gases such as CO2 and short lived pollutants such as black carbon (very short lived) and methane (short to medium life). Mexico is reasonably transparent here as well, although its highest level number aggregates the two, i.e. “Mexico is committed to reduce unconditionally 25% of its Greenhouse Gases and Short Lived Climate Pollutants emissions (below BAU) for the year 2030”. The problem is that although carbon dioxide and black carbon (which is the major focus in Mexico) both contribute to warming of the climate system, they behave very differently in the atmosphere and mitigation leads to different outcomes which are not interchangeable.

Black carbon remains in the atmosphere for only days or weeks, which means it strongly impacts the rate of warming today but has little impact on the global goal to limit overall warming of the climate system to 2°C, unless of course there is still an unacceptable level of black carbon in the atmosphere at a time in the future when warming is approaching its peak. By contrast, carbon dioxide remains for hundreds to thousands of years and largely sets the thermostat of the future climate. Solving the black carbon problem today would deliver tangible near term benefits on a number of fronts, but unless carbon dioxide mitigation also takes place the long term outcome will hardly shift.

Mexico has set the bar quite high with its clear and well-structured contribution, but the metrics and baseline used highlight issues that the UNFCCC may need to deal with over the coming months as it begins to assess the merit of all the national contributions.

The last days of March have seen the start of submissions of Intended Nationally Determined Contributions (INDCs) to the UNFCCC. The United States, Switzerland, European Union, Mexico and Russia have all met the requested deadline of the end of Q1 2015. As is expected and entirely in line with the UNFCC request, the INDCs focus on national emissions. After all, this is the way emissions management has always been handled and reported and there is no sign of anything changing in the future.

As was to be expected, the United States submitted an INDC that indicated a 26-28% reduction in national emissions by 2025 relative to a baseline of 2005. This is an ambitious pledge, and highlights the changes underway in the US economy as it shifts towards more gas, backs out domestic use of coal, improves efficiency and installs renewable generation capacity. So far the USA national inventory indicates that the 2020 target is being progressively delivered, although it will be interesting to see whether this trend changes as a result of the sharp reduction in oil prices and a couple of summer driving seasons on the back of that.

US 2020 and 2030 Reduction Target

My own analysis in 2011 (see below) was that the USA would come close to its 2020 goal, but may struggle to meet it. The different overall level of emissions in the charts is the result of including various sources (e.g. agriculture) and gases, or not.

US 2020 Goal with 2010 data

Direct emissions represent just one view of US emissions. Some would argue that the national inventory should also include embedded emissions within imported products, but this introduces considerable complexity into the estimation.

Another representation of US emissions which is perhaps more relevant to the climate issue is the actual extraction of fossil carbon from US territory. As the climate issue follows a stock model, the development of global fossil resources and subsequent use over the ensuing years is a measure that is closer to the reality of the problem. The larger the resource base that is developed globally, the higher the eventual concentration of carbon dioxide that the atmosphere is likely to reach. This is because the long-term accumulation will tend towards the full release of developed fossil fuel reserves simply because the infrastructure exists to extract them and as such they will more than likely get used somewhere or at some time. This isn’t universally true, as the closure of some uneconomic coal mines in the USA is showing; or are they simply being mothballed?

A look at US carbon commitment to the atmosphere from a production standpoint reveals a different emissions picture. Rather than seeing a drop in US emissions since 2005, the upward trend that has persisted for decades (albeit it a slower rate since the late 1960s) is continuing.

US emissions based on extraction

In the case of measured direct emissions, reduced coal use is driving down emissions. But for the extraction case, additional coal is now being exported and the modest drop in coal production is being more than countered by increasing oil and gas production. Total carbon extraction is rising.

While there is no likelihood that national emission inventories will start being assessed on such a basis, it does nevertheless throw a different light onto the picture. In a recent visit to Norway it was interesting to hear about national plans to head rapidly towards net-zero emissions, but for the country to maintain its status as an oil and gas exporter. This would be something of a contradiction if Norway was not such a strong advocate for the development of carbon capture and storage, a strategy which will hopefully encourage others to use this technology in the future.

Back in 2009 this blog was kicked off by a trip to Antarctica for the NGO 2041. Over the last two weeks I have had the privilege to return, again with 2041. This is an NGO that is dedicated to the preservation of the continent as a last untouched place on earth – the name derives from the 50th anniversary of the Antarctic Treaty which imposes a moratorium on mining and resource extraction form Antarctica, but with the possibility of review of that provision in the 2040s.

2041 run annual expeditions to the Antarctic Peninsula in a bid to help younger people understand the importance of the continent with the potential that some of them may be in a position to make a difference on the outcome of any review in 30 years time. This overarching story about Antarctica serves as a backdrop for a deeper dive into sustainability and environmental issues, including climate change.

I gave a series of presentations on climate change over the two weeks, drawing extensively from the material in this blog and from my recent book. When I spoke in the theatre on the ship, the world’s largest cache of fresh water was visible through the window beside me; as ice stored in the mighty glaciers of the Antarctic continent.  A chain of events is now unfolding leading to a gradual reduction in ice mass in Antarctica, thereby raising sea levels and slowly impacting coastlines the world over. The young people in the audience will have to deal with this legacy.

On the trip we saw a different legacy of sorts, with a stop at Whalers Bay in Deception Island; I use the word “in” here because you literally sail into the island to reveal its splendour. Whalers Bay is a sombre place where for a period of some thirty years early in the 20th Century killed whales were brought ashore for rendering and extraction of their valuable oil. Although US whale oil use had almost vanished by 1900, it continued on globally for some time after this, being used for lamp oil, soap and margarine. But by the 1930s when Whalers Bay was eventually abandoned, whale oil prices globally had collapsed as substitutes for almost all its uses had been found. Electricity, crude oil and vegetable oils brought this industry to an end. Whalers Bay is an interesting place to contemplate the market shifts we may see this century!

To close out, here are a few of my photographs from the expedition. The final photograph is of a rare sighting of a sperm whale near Cape Horn.

D53Q4988

D53Q5124

D53Q5328

D53Q5471

D53Q5580

D53Q5711

D53Q6016

D53Q6566

D53Q6736

It is looking increasingly likely, but not a given, that a reference to global net-zero emissions or even a specific goal to achieve net-zero emissions by a certain date (e.g. end of the century) will appear in the climate deal that is expected to emerge from the Paris COP at the end of this year. But like many such goals, it is both open to interpretation and raises questions as to how it might actually be achieved.

The background to this is that the issue itself implies that this outcome is necessary. The IPCC says in its 5th Assessment Report;

Cumulative emissions of CO2 largely determine global mean surface warming by the late 21st century and beyond. Limiting risks across RFCs (Reasons for Concern) would imply a limit for cumulative emissions of CO2. Such a limit would require that global net emissions of CO2 eventually decrease to zero and would constrain annual emissions over the next few decades (Figure SPM.10) (high confidence).

However, the term net-zero needs some sort of definition, although this is currently missing from the UNFCCC text. One online source offers the following;

Net phase out of GHG emissions means that anthropogenic emissions of greenhouse gases to the atmosphere decrease to a level equal to or smaller than anthropogenic removals of greenhouse gases from the atmosphere.

The above effectively means stabilization of the atmospheric concentration of CO2, which also aligns with the ultimate aim of the UNFCCC Convention (stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system). This could still leave room for some level of emissions in that climate models show atmospheric concentration of carbon dioxide will decline if anthropogenic emissions abruptly stopped. In a 450 – 500 ppm stabilization scenario emissions could remain in the range 7-10 billion tonnes CO2 per annum without driving the atmospheric concentration higher. This is far below current levels (35 billion tonnes per annum from the energy system alone), but it isn’t zero. It can be classified as net-zero though, in that the atmospheric concentration isn’t rising.

However, such an outcome, while stabilizing the atmospheric concentration may not be sufficient to prevent dangerous interference with the climate system. In that case an even lower level of emissions may be required, such that atmospheric concentrations do begin to fall and stabilize at a lower concentration.

Another definition of net-zero may simply apply to anthropogenic emissions directly, irrespective of what the concentration in the atmosphere might be doing. In this case, any remaining emissions from anthropogenic sources (and there will be some) would have to be offset with sequestration of carbon dioxide, either via CCS or a permanent forestry solution. In the CCS case, the carbon dioxide would need to come from a bio-source, such as the combustion of biomass in a power station. This is what the IPCC have termed BECCS.

A final step which goes beyond net-zero, is to have an anthropogenic net-negative emissions situation, which is drawing down on the level of carbon dioxide in the atmosphere through some anthropogenic process. This would be necessary to rapidly lower the concentration of carbon dioxide in the case of a significantly elevated level that comes about in the intervening years between now and the point at which the concentration stabilizes. Very large scale deployment of BECCS or an atmospheric capture solution with CCS would be required to achieve this.

Finally, there is the consideration that needs to be given to greenhouse gases other than carbon dioxide. Methane for example, while a potent greenhouse gas, is relatively short lived (a decade) in the atmosphere so will require some thought. Even in a zero energy emissions system, methane from agriculture and cattle will doubtless remain a problem.

Both of the Shell New Lens scenarios end in a  net zero emissions outcome by the end of the century, but this is within the energy system itself and does not encompass the full range of other sources of CO2 emissions and other long lived greenhouse gases. Nevertheless, with extensive deployment of CCS the Mountains scenario heads into negative emissions territory by 2100 and the Oceans scenario soon after that (which means there is potential to offset remaining emissions from very difficult to manage sources). Oceans relies on this approach in a major way to even approach zero in the first instance

Many look to renewable energy as a quick solution to the emissions issue, but the reality is far more complex. While we can imagine a power generation system that is at near zero emissions, made up of nuclear, renewables and fossil fuels with CCS, this is far from a complete solution. Electricity currently represents only 20% of the global final energy mix (see below, click for a larger image: Source IEA).

Global final energy 2012

Solutions will need to be found for a broad range of goods and services that give rise to greenhouse gas emissions, including non-energy sources such as limestone calcination for cement and cattle rearing for dairy and direct consumption. While we can also imagine a significant amount of global light transport migrating to electricity, shipping, heavy transport and aviation will not be so simple. Aviation in particular has no immediate solution other than through a biofuel route although there is some experimentation underway using high intensity solar to provide the energy for synthesis gas manufacture (from carbon dioxide and water), which is then converted to jet fuel via the well-established Fischer–Tropsch process. There are also dozens of industrial processes that rely on furnaces and high temperatures, typically powered by fuels such as natural gas. Metal smelting currently uses coal as the reducing agent, so a carbon based fuel is intrinsic to the process. Solutions will be required for all of these.

Whether we aim for a very low level of emissions, true net-zero anthropogenic emissions or negative emissions is somewhat academic today, given the current level of emissions. All the aforementioned outcomes are going to require a radical re-engineering of the energy system in a relatively short amount of time (< 80 years).

At the UN Climate Summit last September, the World Bank and others put the carbon pricing – or perhaps more correctly carbon valuation – discussion squarely back on the agenda, first with a Statement on Carbon Pricing signed by over 1000 companies and 70 governments and then with a series of side events and meetings which also carried through to COP20 in Lima. The World Bank is now building on their initiative throughout 2015 as we head towards COP21 in Paris.

One important aspect of the initiative is the role of business and the way in which companies handle the carbon pricing (carbon valuation) agenda internally. This stems from another part of the World Bank initiative which was initially launched by the UN Global Compact, the Business Leadership Criteria on Carbon Pricing. The criteria are designed to encourage companies to incorporate an internal carbon price (value) within the business, advocate for  carbon value generally and communicate on progress. The first of these has led to some interesting discussions in various forums, with a range of views emerging as to what an internal carbon price (value) does and how it is applied.

Some observers have concluded that an internal approach operates as a true proxy cost of carbon emissions within the business that is applying it, such that the business behaves as if it were subjected to an external carbon tax operating at the same price. This would be done in the absence of such an external price driver, therefore acting as a stand-in for the lack of government action. To some extent, wishful thinking is operating here, with some believing that internal carbon pricing can lead to widespread emission reductions as a major business led initiative. But this is not what is happening or what is meant by an internal carbon price.

Rather, the internal “carbon price”, also referred to as a “shadow carbon price”, “carbon price premise” or “carbon screening value” is normally a mechanism used to manage the future regulatory risk that parts of the company or a future project may be exposed to. For example, if a certain investment is to be made, that investment is then tested against a variety of future conditions, which could include an eventual cost incurred by the expected emissions of carbon dioxide. Although the project may not immediately be exposed to such a price, the development of climate legislation over the life of the project may create such an exposure, which in turn could threaten the future viability of the asset. The application of a screening value applied when the investment proposal is being assessed allows the investor to reconsider the project, change the scope, modify the design or simply accept the level of risk and proceed.

The practice of applying an internal carbon price (value) in this manner is one of many steps that a company may take as it prepares for a world in which a real cost on carbon emissions becomes an external reality. The World Bank has developed a series of case studies on these preparatory measures and these have been published very recently in a report titled “Preparing for Carbon Pricing, Case Studies from Company Experience: Royal Dutch Shell, Rio Tinto, and Pacific Gas and Electric Company”. The report was prepared by the Washington based Center for Climate and Energy Solutions (C2ES) under the auspices of the Partnership for Market Readiness, a World Bank initiative.

Preparing for carbon pricing

These case studies illustrate the benefits of incorporating climate change policies into corporate strategies; analyzing risks and opportunities in an environment of new public policies; and engaging effectively with relevant stakeholders—including governments. The case studies also show how carbon assets are traded and what systems are being constructed to monitor, report, and verify company level GHG emissions.