With the choice of a high road and a low road from Lima to Paris, the Parties seem to have selected the dirt track off to the side, replete with rocks, obstacles, difficult terrain and an uncertain destination. However, the map they have crafted in Lima, while full of options and dead ends, does at least have some clear pointers to the outcome that is actually needed. The question is whether or not these are followed.

The Lima call for climate action turned out to be a hard won outcome, with the talks extending into Sunday morning as negotiators struggled to reach agreement over one issue in particular that has dogged the process since its very beginnings in 1992 – the respective roles of developed and developing countries. Many commentators believed that the negotiations in Durban in 2011 had, at least to some extent, relegated this issue to the history books.

In particular, Professor Robert Stavins of the Harvard Kennedy School in Boston, said in his 2011 report on Durban;

It focuses instead on the (admittedly non-binding) pledge to create a system of greenhouse gas reductions including all Parties (that is, all key countries) by 2015 that will come into force (after ratification) by 2020. Nowhere in the text of the decision will one find phrases such as “Annex I,” “common but differentiated responsibilities,” or “distributional equity,” which have – in recent years – become code words for targets for the richest countries and a blank check for all others.

In the aftermath of Lima, the flavour of differentiation has reappeared and even some of the words. The call for climate action now incorporates a clear reference to “common but differentiated responsibilities“, albeit with the addition taglines of “respective capabilities” and “in light of different national circumstances“. Professor Stavins was quick off the mark with an assessment of Lima, but still maintained that the intent of Durban remained;

. . . . the fact remains that a new way forward has been established in which all countries participate and which therefore holds promise of meaningful global action to address the threat of climate change.

It is difficult to agree with this given the recent negotiations. By contrast, Jonathan Grant of PWC referred to the final day of Lima as “trench warfare mentality”. While it is certainly the case that all countries are still required to submit INDCs of some description, the allowable range of options and structure to pick from has broadened considerably. Notably, Parties “may include” details such as quantifiable information and time frames, rather than the previous wording of “shall include”.

Adaptation planning is strengthened considerably, with this subject now highlighted in the opening lines of the Lima text and also referenced clearly in the context of INDCs. For developed countries this probably has little meaning in terms of their own actions, but for a number of developing countries this could be interpreted as a call for additional financial assistance from developed countries simply to build national infrastructure. The Loss and Damage issue also resurfaced with specific mention in the Lima text. These two apparent concessions may turn out to be a high price to pay for retaining some semblance of the Durban mitigation philosophy.

The intensity with which the developed / developing country issue erupted in the last hours of the Lima COP raises valid questions about the negotiations over the coming year. Leaving this particular issue still looking for a solution in Paris itself may be a burden too great for those final days, but it could also be that no matter how much effort is put into solving it in the interim, it will nevertheless emerge again in the last hours in 12 months time simply because negotiations tend to do things like this.

Looking more positively at the Lima call for climate action, the 40 page annex, “Elements for a draft negotiating text“, throws up some interesting tidbits but also a host of negotiating options which will need to be resolved. Two tidbits of note are;

  1. The mention of carbon pricing in the text; “Acknowledging that carbon pricing is a key approach for cost-effectiveness of the cuts in global greenhouse gas emissions.
  2. The reference on several occasions of an end-goal of net-zero anthropogenic emissions; “Also recognizing that scenarios consistent with a likely chance of holding the global average temperature increase to below 2 °C relative to pre-industrial levels include substantial cuts in anthropogenic greenhouse gas emissions by mid-century and net emission levels near zero gigatonnes of carbon dioxide equivalent or below in 2100.

The carbon pricing mention is almost certainly the result of the recent tireless work of the World Bank in getting this critical subject back on the global agenda, but the reference is rather empty in that no strong follow-up text supports it. Rather, there are several vague references to the use of markets and mechanisms.

The “net zero” reference though is quite bold, in that even if this century sees a sharp reduction is emissions, a net zero goal is much more challenging. Residual emissions from agriculture, industrial processes, land use changes and some level of direct fossil fuel use will likely remain well into the 22nd century if not beyond that, which means at a minimum some large scale application of carbon capture and storage at some point in the future.

There was much more to Lima than just the last hours of tense standoff politics, but that is what the world will likely focus on in the coming days. The draft negotiating text sets out some clear options for the future, although if the weakest of these is picked in every instance the end result will have hardly been worth the effort. However, there is also text there that doesn’t have options, so that may well see the light of day in Paris. This is the case for some of the “net zero emissions” wording and also the need for Parties to “develop low emission strategies” and “maintain commitments / contributions / actions at all times“.

As such, there remain a few reasons to be hopeful.

Wandering the COP20 campus, listening to side events and hearing senior political, business and NGO representatives talk about the climate issue results in a mild reality distortion field impairing your judgement; you start to feel sure that we must already be on a new energy pathway, that global carbon pricing is just around the corner and that the Paris deal will deliver something approaching 2°C.

Then something happens to shatter that field and realisation sets in that there is still a long way to go before a truly robust approach to the climate issue emerges. On Tuesday evening the field was disturbed by tweets from a colleague at PWC @JG_climate reporting on negotiators squabbling over INDCs, with Brazil’s concentric differentiation approach causing some angst amongst a number of developed countries and the proposed text describing the nature of an INDC expanding by some thirty pages. This negotiation is far from over and the road ahead to Paris will likely be very bumpy. There will be a few dead-ends to watch out for as well.

Another reality hit home on Monday afternoon with the recognition that many people in the civil society groups here in Lima just don’t want to hear about the reality of carbon capture and storage (CCS). The Global Carbon Capture and Storage Institute (GCCSI) held an excellent and well attended side event on Monday afternoon which was initially mobbed by some 100+ demonstrators and their press entourage. The demonstrators crowded into the modest sized room and the hallway outside, waited for the start of the event and then promptly left as Lord Stern opened the side event with his remarks on the need for a massive scale-up of CCS. Arriving and then departing en masse allowed them to tweet that civil society had walked out on Lord Stern. The demonstrators were equally upset that Shell was represented at the event with my presentation on yet another sobering reality; 2°C is most likely out of reach without the application of CCS; also a finding of the IPCC in their 5th Assessment Report. They also took exception to flyers for my book which carries the same message.

CCS Event (small)

What was really concerning about this walk-out was that the younger people who made up the group would rather protest than listen and learn. Had they stayed they would have heard a remarkable story by Mike Monea of SaskPower who talked about the very successful start-up of the world’s first commercial scale coal fired power plant operating with carbon capture, use (for EOR) and storage. This technology needs some form of carbon pricing structure for delivery and in the case of this project the bulk of it came from the sale of CO2 for EOR. There was also a capital grant from the government. Importantly, SaskPower noted that a future plant would be both cheaper to build (by some 30%) and less costly to operate. This potentially points the way to a technology that can deliver very low emission base load electricity at considerably lower CO2 prices than the ~$100+ per tonne of CO2 that current desktop studies point to. That may also mean CCS appearing without government support sooner rather than later. Of course, the actual construction and delivery of second generation projects will still be required to confirm this.

A minor reality distortion arose from a question directed at me during the GCCSI side event. One audience member asked me about Shell’s membership of ALEC, a US organisation that operates a nonpartisan public-private partnership of America’s state legislators, members of the private sector and the general public.  ALEC doesn’t seem to think that a carbon price should be implemented in the USA, hence the question to me given Shell support for carbon pricing.  Responding to the Climate correctly reported on my response, which was along the lines of “. . that despite their position  on climate issues we still placed a value on their ability to convene state legislators”, but DeSmogBlog had their own interpretation of this. They reported on this under a headline which stated “Company ‘Values’ Relationship with Climate-Denying ALEC”.

It’s also proving a challenge to gain acceptance for the reality of markets and the role they are likely to have in disseminating a carbon price throughout the energy system. This means that carbon market thinking is still struggling to gain a foothold in text proposals for Paris, with one negotiator commenting at an event I attended that “we don’t see much call for markets at this time“. Silence on markets is the preferred strategy for some Parties, with others taking the view that specific mention and some direction is a must. More on this at another time as the Paris text develops further.

The evenings in Lima have been filled with some excellent events. With so many people in town, dinner discussions are convened by the major organisations represented here, which results in great conversations, useful contacts and plenty of new ideas to think about. The Government of Peru have organised and run a very good COP, despite early concerns that there were initially no buildings on the site they chose for the event.

COP20 in Lima ended its first full week on a mixed note, but with some positive signs for the ongoing process. The detailed discussions on the role of carbon markets under the SBSTA ended in disagreement and postponement which was disheartening, but there remains hope that this key subject will still see the light of day under the ADP during the coming days. Curiously, China (and others) opposed deepening the market discussion at SBSTA because of a lack of guidance from the ADP itself, but according to the Earth Negotiation Bulletin they stated in the ADP when reflecting on the Paris Agreement non-paper (ADP.2014.11.NonPaper) that “sections on market and non-market approaches, and new market-based mechanisms could prejudge discussions under the Subsidiary Bodies”. They seem to be setting themselves up for their own private Catch-22 there. It was also unfortunate that those who will pick up the ongoing challenge posed by carbon emissions and climate change were reported on as follows; “YOUNGOs noted that markets have not delivered what they promised and called for a moratorium on markets.” Perhaps they have been reading Naomi Klein’s book “This Changes Everything”.

One document in particular that drew attention was a paper circulated by Brazil, detailing an idea they had proposed at the October ADP meeting. Brazil have a long history of creative intervention in the process, being the country that “invented” the Clean Development Mechanism (CDM), which over the decade of its operational life has delivered tens, if not hundreds of billions of dollars (depends on your measurement definitions) of carbon finance to developing countries. It appears that Brazil is back to its creative best with a paper on “concentric differentiation”, which draws together both the concept of CBDR-RC* and the need for universal acceptance and eventual implementation of absolute targets as the route to atmospheric stabilisation of carbon dioxide.

The paper is best described by referencing a diagram included by Brazil (see below). Initially the INDCs** of various parties are scattered throughout the circles depending on their capabilities, with all developed countries starting in the middle. The crucial change to previous attempts at agreement is the inclusion of the proposal;

“developing country parties are expected to include in their respective NDC a type of economy-wide mitigation targets, leading to absolute targets over time”

This means that everyone migrates inwards as their capabilities allow, but that developing country parties at least start with an emissions goal, albeit intensity based, per capita based or based on a business-as-usual (BAU) deviation. Least developed economies start in the outer ring and are encouraged, but not required to present an INDC. Eventually all parties end up with absolute targets in the middle.

Brazil concept

This is a very encouraging proposal by Brazil and it also includes an extensive reference to markets, cap-and-trade, a reformed CDM and so on. But without wanting to take away from the importance of their thinking, it does raise the question of whether it is a decade or more too late. This is the proposal that should have come when parties were negotiating onward commitment periods of the Kyoto Protocol (KP), thereby giving that agreement new life and making it fit for purpose in the 21st Century. Almost all the necessary pieces were already in place, it simply (!! – nothing is ever that simple) required the addition of the middle ring and the provisions for promotion.

In KP language, the centre ring is the AAU (Assigned Amount Unit) world, now only home to the EU, Norway, Australia and Ukraine. Even Japan has left. The outer ring is the CDM world, which relies on financial flows from the inner ring. A renegotiation and addition to KP could have inserted the middle ring and promotion requirements and even developed a new carbon accounting unit for intensity based targets. With all three rings based on carbon units, the much needed “global carbon market” could have taken off relatively quickly. Such a design might have even brought back countries such as the USA given that its objections regarding developing country actions would have been addressed.

One aspect of the Brazil proposal that has some traction in the ADP is the idea that “backsliding” on INDCs won’t be permitted. In other words, once you have declared an INDC with an absolute target, that is where you stay.

The Brazil proposal is for the ADP and not for the KP; which means that parties will have to reinvent everything from scratch. But at least Brazil is there with its creative input leading the way. On to Week 2 in Lima where the Parties are at least into the process of negotiating text, rather than negotiating the procedures under which they would even consider text.

 

* Common but differentiated responsibilities and respective capabilities

**Intended nationally determined contributions

 

COP20 is now underway in Lima and I have been on the newly created site for two days. Less than three months ago this was apparently an empty piece of land in a large Peruvian government complex, but now it is a bustling and well fitted out set of temporary buildings for housing negotiators and observers from some 190 countries; plus of course their entourage, a large security contingent, caterers, support staff and voluntary guides. The facilities are good and the meetings have started, but solid progress is hard to identify. There’s a lot resting on Lima as Carbon Visuals have clearly shown!!

Lots resting on Lima

Although the ADP (The Ad Hoc Working Group on the Durban Platform for Enhanced Action) is charged with the unenviable task of producing an agreement text for Paris in just one year and has been running for three years with this in mind, the opening days here are once again like watching the opening rounds of a chess match, with the Parties positioning themselves for later confrontation rather than attempting to clear the way and open up the game. This isn’t to say that nothing has happened since Durban; there is at least a non-paper on elements of a draft negotiating text and this is where the discussions for this COP have started.

While the ADP continues its discussions, the various strands of other dead or dying negotiations continue on, although to what end it is sometimes hard to see. Sitting within the technical bodies are the remnants of the LCA (the failed Copenhagen agreement), which includes the Framework for Various Approaches (FVA) and New Market Mechanism (NMM). This is where the main discussion around the use and expansion of carbon markets and mechanisms sits, but progress here has been close to zero since the discussions fell apart in Warsaw as I reported last year. No progress is being made in Lima, with a standoff between parties preventing any further discussion based on objections from Brazil, China, Bolivia, South Africa and Saudi Arabia to this work continuing in the absence of a mandate from the ADP. They have argued that until the ADP takes shape and sets the scene for the development of a carbon market framework, then there is no point having discussions on this subject on the sides. The problem is that unless these side negotiations make some progress in defining what a carbon market framework might look like, the ADP can’t really incorporate the necessary hooks within its structure to give the mandate to the FVA and NMM workstreams to continue their deliberations. Catch 22 comes to mind!

Perhaps on a brighter note, an active side event schedule is well underway. Attendance at these events, often lacklustre in the first few days, appears to be good, with an IPCC event that I spoke at on Wednesday afternoon playing to a nearly full house in quite a large room. This was an event about how people use and interpret the findings of the IPCC, rather than what the IPCC itself had to say in its 5th Assessment Report. But even here the differences in how people view the world show up. I spoke about the key role that CCS plays in scenarios that are targeting aggressive reductions (i.e. 430-480 ppm CO2e) and how a particular table in the IPCC report showed the sharp increase in costs if CCS was unavailable.

IPCC WGIII Table SPM2

My point was not just to highlight this table, but to use it to illustrate a problem the IPCC has in taking complex information and bringing it to the surface. The table was my case study. While it represents the actual findings of the IPCC, it seems to have little bearing on what people think (see below for my key slide from the presentation I gave) they said and I argued that the IPCC and UNFCCC are part of the problem in the way they summarise, shorten, tweet and disseminate the data. Deep down in the 5th Assessment Report it is very clear that a 2°C outcome is very (perhaps totally) dependent on the deployment of CCS, but this wasn’t even discussed in the high level summaries and press releases that were put out at the time. As I mentioned back in September, when the UN Climate Summit took place in New York, CCS wasn’t even on the agenda but a whole session was devoted to renewable energy. While renewable energy (solar / wind) is important in the context of energy access, the table clearly highlights that it isn’t really key to 2°C.

Declining facts

As if to underscore the point, the panellist from Climate Action Network took the stand and said that the IPCC work helped him realise that the world should and could be running on 100% renewable energy by 2050. It wasn’t at all clear to me where this realisation came from in the actual IPCC work, but you can probably guess who had the longest line of audience members wanting to be met with after the event – it wasn’t me.

Let’s hope for some greater enlightenment in the days to come.

In a post earlier this year I compared the endless claims around renewable energy to the famous “reality distortion field” (RDF) that was first employed by the Talosians in the original series of Star Trek, but was later linked with the management style of Steve Jobs. The RDF was said to be Steve Jobs’ ability to convince himself and others to believe almost anything with a mix of charm, charisma, bravado, hyperbole, marketing, appeasement and persistence.

It would appear that after the announcement by the USA and China on their emissions agreement, a new reality distortion field is appearing around the subject of Chinese coal use.

It is very clear from all the reports coming from China that there is real concern about the use of coal and its link with the air quality in many major cities. It is also clear that the Chinese government is now starting to address this issue through the management of coal use, including the closure of older more polluting stations, the use of natural gas, the rapid build of nuclear and renewable energy capacity and so on. But coal use is continuing to increase, albeit more slowly than in recent years. While coal use in parts of the country may even decrease in the near term, as rapid development spreads to all corners of China over the next decade energy demand will continue to grow and total coal use will probably follow.

In the excitement around recent announcements, many organisations are now pinning their hopes on Chinese coal use peaking much earlier than the announced 2030 timeframe for a peak in overall emissions. As a result, when a revised energy strategy was announced in China recently, it was widely reported under the effects of the new distortion field.

According to two Chinese news reports that I could find (Xinhuanet and Shanghai Daily), the following is what was apparently announced;

The State Council promised more efficient, self-sufficient, green and innovative energy production and consumption in the Energy Development Strategy Action Plan (2014-2020). It included a cap set on annual primary energy consumption set at 4.8 billion tonnes of the standard coal equivalent until 2020. Annual coal consumption will be held below 4.2 billion tonnes until 2020, 16.3 percent more than the 3.6 billion tonnes burned last year, according to the National Coal Association.

My interpretation of this is that China has outlined its energy consumption goals for the period 2014 to 2020, but said nothing about the post 2020 period. However, this was reported very differently by others who decided to interpret the announcement as a cap on coal use by 2020. For example, the UNFCCC press release said;

The Chinese State Council also announced a new energy strategy action plan that includes ambitious measures to cap national coal consumption as early as 2020 at 4.2 billion tons, and reduce coal’s share of China’s primary energy mix to less than 62 percent by that same year.

The Climate Reality Project even had a small poster made to announce their interpretation of the plan;

China coal

Chinese coal use might peak in the medium term and emissions from coal will certainly have to peak before 2030 because of their announced INDC (national contribution) in-tandem with the announcement by the USA. But even then coal use may continue to grow if carbon capture and storage (CCS) can be successfully deployed at scale.

For me, the big announcement of the week is the proposed creation of a national carbon market to follow the regional trials now underway. Shanghai Daily reported the following;

China will open a nationwide carbon market in 2016 to help the government reduce emissions by 2030, the National Development and Reform Commission yesterday said in Beijing. Su Wei, an official at the climate change department under the NDRC, said he expected the market to be mature by 2020.

A robust and mature carbon market active throughout the 2020s could bring emissions from coal to a rapid standstill and even see them fall through fuel switching to natural gas and the deployment of CCS. Then it will be time to put up a poster.

The in-tandem announcement last week by the USA and China caught many by surprise, resulted in lots of applause and back slapping and then raised questions as to which country has the tougher or easier deal. A bit of simple analysis offered below may help answer that question.

In the long period between Kyoto and Copenhagen as commentators saw that the Kyoto Protocol probably wasn’t going to be sufficient to rein in global emissions, various ideas (re)appeared as to how the future reduction burden should be shared, particularly amongst countries with widely different development pathways. One idea that gained considerable prominence was known as Contraction and Convergence. In fact this idea was first proposed in 1990 by the Global Commons Institute (GCI).

Contraction refers to the ‘full-term event’ in which the future global total of greenhouse gas emissions from human sources is shrunk over time in a measured way to zero net-emissions within a specified time-frame.

Convergence refers to the full international sharing of the emissions contraction-event, where the ‘emissions-entitlements’ for all countries result from them converging on the declining global per capita average of emissions arising under the contraction rate chosen.

Last week the USA announced reductions of 26-28% by 2025 relative to 2005 and China announced a peaking in emissions by 2030. There really isn’t enough information given to fully dissect this, but a few simple assumptions makes for an interesting observation. For starters, I have assumed that energy emissions are a proxy for total emissions, in part because energy information is so readily available whereas information on methane, other GHGs and land use is much more difficult to piece together. The second assumption is that the 2020-2025 annual rate of reduction in the USA of about 2% p.a. continues through to 2030 (i.e. a reduction of 37% in 2030 relative to 2005) and the third assumption is that China exhibits a noticeable “glide path” towards a 2030 peak, rather than extreme growth that comes to a shuddering halt. At least for energy emissions, the picture looks something like the one below, but in the language of convergence, i.e. emissions per capita.

Emissions per capita USA and China

What becomes apparent is that the USA and China appear to have adopted a “Contraction and Convergence” approach, with a goal of around 10 tonnes CO2 per capita for 2030, at least for energy related emissions. For China this means emissions of some 14.5 billion tpa in 2030, compared with the latest IEA number for 2012 of 8.3 billion tonnes, so a 75% increase over 2012 or 166% increase over 2005. It also has China peaking at a level of CO2 emissions similar to Europe when it was more industrial, rather than ramping up to the current level of say, the USA or Australia (both ~16 tonnes). By comparison, Korea currently has energy CO2/capita emissions of ~12 tonnes, so China peaking at 10 is some 17% below that.

If the USA and China stayed in lockstep after 2030 with the same reduction pathway that plays out in the USA over the period 2020-2030, that might mean 6.6 tonnes CO2 per capita by 2040, or 9.5 billion tpa for China, which is still slightly higher than the current level.

Two views on mitigation economics

  • Comments Off

The annual Forum held by the MIT Joint Program on the Science and Policy of Global Change is always an interesting event, with excellent presentations and lively debate ensuing. The recent Forum held in Boston in early October was no exception thanks to a discussion on two very different approaches to triggering the necessary mitigation of carbon dioxide emissions.

The debate started with a presentation on cumulative emissions and the clear link to atmospheric warming. This comes back to the “stock” vs. “flow” nature of carbon dioxide into the atmosphere which I have written about here and is the foundation of my recent book. The key to the issue is that as CO2 is a stock addition to the atmosphere, it doesn’t matter when or where the CO2 is emitted for the same net accumulation. As a result, the eventual accumulation will tend towards the full release of known fossil fuel reserves simply because the infrastructure exists to extract them and as such they will get used somewhere or at some time.  This also implies only one remaining path forward (given that non-use is unlikely) for stabilizing atmospheric concentrations of CO2; capturing and storing the CO2 when the fuels are used (i.e. Carbon Capture and Storage or CCS)

The above line of reasoning led one participant to propose that the simplest solution to the climate issue was to mandate sequestration, starting with a small amount for each tonne of CO2 emitted, say 1-2%, but progressively increasing this throughout the century until 100% is reached. Tradable CCS certificates (where one certificate represents one tonne of CO2 stored) could be used to distribute the benefits of individual large projects amongst many, particularly in the early years when the sequestration requirement from an individual emitter would still be small. Further, it was argued that this was economically more attractive than the widespread use of a carbon price, which would have to get to higher levels (probably more than $50/tonne) than current systems are offering to trigger even the first CCS project.

In the case of CCS certificate trading, which might trade in the range $50-$100 per tonne of stored CO2 early on, the cost for an individual emitter would nevertheless be initially small. If this was started in 2020 at 1% and reached 15% sequestration by 2030 (i.e. 100% by mid 2080s), the average cost over the period 2020-2030 to an emitter would be $8.50 per tonne of CO2, even with CCS certificates trading at $100 each. This is about the current level of the EU ETS which of course is unlikely to see any CCS projects at such prices.

For a carbon pricing approach, the CO2 price would have to be somewhat higher than the current level in the EU ETS to trigger CCS activity, which would likely delay its implementation and in any case probably cause grief within the system simply because of the higher price and its claimed impact on industry, competitiveness and consumers. It was argued in the MIT debate that this latter effect could well mean that it becomes politically unacceptable to ever let direct pricing mechanisms get to the level required for CCS.

The carbon pricing economists in the room responded to this, arguing that the direct pricing approach was more efficient in that it would allow a range of other mitigation options to play out in the interim before CCS was actually needed. This brought the response that only under the circumstances of uniform carbon pricing with full global reach might this be true; although with the caveat that in the context of an accumulation problem, there were no other mitigation options other than CCS and not using the fuels in the first instance. Partial reach (e.g. the EU ETS and China ETS) of carbon pricing, while significant, might simply introduce a trade distortion, rerouting fossil fuels to other parts of the world and eventually resulting in the same accumulation in the atmosphere. The claim was that carbon pricing tended to address the problem on a flow basis rather than stock basis and measured success as reduced emssions in the location where it operated, rather than reduced accumulation in the atmosphere over the long term. By contrast, it was argued that any application of CCS, even on a local basis, dealt directly with accumulation.

There wasn’t a resolution to the issues discussed above, but the discussion was a great example of the early development of policy thinking. Carbon pricing has dominated the debate for many years and rightly so, but as the science shifts in its emphasis and focuses more specifically on the root causes, policy will eventually have to adjust as well.

The release of the IPCC 5th Assessment Report Synthesis document on Sunday was a useful reminder of the wealth of measurements, observations and science behind the reality of the anthropocene era and the impact it is having on global ecosystems. While some may embrace this material as proof of society’s “wicked ways” and others may contest it on the grounds of conspiracy or hoax, the real job at hand is to find a way of dealing with the challenge that is posed. Within the 100+ pages of text of the longer report, two parts in particular highlight the scope of what needs to be done.

Within 1.2.2:

Despite a growing number of climate change mitigation policies, annual GHG emissions grew on average by 1.0 GtCO2eq (2.2%) per year, from 2000 to 2010, compared to 0.4 GtCO2eq (1.3%) per year, from 1970 to 2000. Total anthropogenic GHG emissions from 2000 to 2010 were the highest in human history and reached 49 (±4.5) GtCO2eq yr-1 in 2010.

Within 3.2 and 3.4:

Global mean surface warming is largely determined by cumulative emissions, which are, in turn, linked to emissions over different timescales. Limiting risks across reasons for concern would imply a limit for cumulative emissions of CO2. Such a limit would require that global net emissions of CO2 eventually decrease to zero.

There are multiple mitigation pathways that are likely to limit warming to below 2 °C relative to pre- industrial levels. Limiting warming to 2.5 °C or 3 °C involves similar challenges, but less quickly. These pathways would require substantial emissions reductions over the next few decades, and near zero emissions of CO2 and other long-lived GHGs over by the end of the century.

The IPCC have now fully embraced the cumulative emissions concept and taken it to its logical conclusion; near zero emissions within this century. This wasn’t explicitly mentioned in the 2007 4th Assessment Report, but was only really there by inference in the mitigation scenario charts that extend beyond 2050. Anyway, the reference is very clear this time around.

This represents a formidable task given the other half of the problem statement also shown above; that emissions are rising faster than ever. There is a second uncomfortable truth buried within this paragraph, which is the implication that current mitigation policies aren’t working.

So there we have it in a nutshell;

Emissions are rising faster than ever, current policies to stop this aren’t working, but we need to be at zero in 85 years.

Eighty five years is the lifetime of an individual. It means that someone born today will need to see a radical change in energy production within the course of their life, to the extent that it is constantly changing for all 85 years, not just locally but everywhere in the world. Arguably someone born in England around 1820 saw this as the industrial revolution unfolded and the Victorian era took hold. But someone born in 1930 hasn’t actually seen a fundamental change in the energy system, rather an enormous scaling up of what was starting to become commonplace at the time of their birth.

This is the issue that I explore in my new book and which is tackled in the Shell New Lens Scenarios released last year. Both the scenarios show that this puzzle is solvable, albeit in very different ways and with different policy approaches but with different levels of success. A critical factor in both scenarios is the timing and deployment rates of carbon capture and storage (CCS). The earlier this starts and the faster it scales up, the higher the chance of limiting warming to around  2°C. This is also highlighted in the IPCC Synthesis Report which says in Section 3.4;

Many models could not limit likely warming to below 2 °C over the 21st century relative to pre-industrial levels, if additional mitigation is considerably delayed, or if availability of key technologies, such as bioenergy, CCS, and their combination (BECCS) are limited (high confidence).

CCS is of course dependent on a price for carbon dioxide or in its absence a standard of some description to implement capture and storage. These policies are largely absent today, despite over two decades of effort since the creation of the UNFCCC. There are certainly some major carbon pricing systems in place, but most are delivering only a very weak carbon price signal and none are leading to large scale rollout of CCS or show any signs of doing so in the near future. Rather, the emphasis has been on promoting the use of renewable energy and increasing the efficiency of energy use. Both of these policies will bring about change in the energy system and efficiency measures will almost certainly add value to most, if not all economies, but it is entirely possible that large scale adoption of these measures doesn’t actually cause global CO2 emissions to fall.

The IPCC have also put a cost on this policy failure in Table 3.2, which shows mitigation costs nearly one and a half times greater in a world which does not deploy CCS. This high cost comes about because the only way to resolve the scenario models is to limit economic activity as means of mitigation; CCS rollout prevents that from happening.

Another way of looking at this is to imagine the actual climate change consequences of delaying CCS rollout, since the likelihood of limiting economic activity is very low. A back calculation from the Shell scenarios implies that every year large scale rollout of CCS is delayed, 1 ppm of atmospheric CO2 is added to eventual stabilisation. This comes about from the cumulative nature of the problem. As such, a 30 year delay means accepting an eventual concentration of CO2 that is some 30 ppm higher than it need be which in turn has consequences for impacts such as sea level rise.

The negotiators now preparing to head to Lima for COP20 and then to Paris a year later may well be poring over the pages of data and dozens of graphs in the 5th Assessment Report, but the message is nevertheless a simple one, although requiring some bold steps.

In conjunction with the ADP meeting in Bonn last week, the UNFCCC held a Technical Expert Meeting (TEM) on Carbon Capture and Storage. It was really good to see this critical technology finally getting some airtime at the UNFCCC and even more importantly the attendance at the meeting by the Parties was good. There was plenty of interest, lots of good questions and a real desire to understand how CCS could be further advanced and more importantly deployed. On a historical note, the meeting was held in what was the German Bundestag between 1949 and 1999. The pigeon holes used by the MPs were still there and dutifully labelled with names such as Dr. A. Merkel.

The morning session covered the technology more broadly and focussed in on some major CCS projects either in operation or under development around the world. I had been invited to speak about the Shell Quest Project in Canada. The afternoon session had a focus on the “U” in a new acronym now entering the discussion, CCUS or Carbon Capture Use and Storage.

Carbon Capture and Use sounds like a great way forward; why not capture the CO2 and put it to good use? That way there will be an economic incentive to tackle emissions and the problem will be solved. This took me back to a dinner at COP19 in Warsaw last year where one participant suggested that CO2 be commoditized such that it would be used even more widely. Unfortunately, this is where thermodynamics gets in the way.

Carbon dioxide sits at the bottom of a deep thermodynamic well.

Thermodynamic well

It is a by-product from a very energetic chemical reaction, the oxidation of a hydrocarbon molecule (i.e. combustion). This releases a tremendous amount of energy (which is why fossil fuels have such value), but leaves us with CO2, which then doesn’t have the energy to react quickly with anything. As such, it is very stable and any chemical use for CO2 which converts it into something else requires a similar amount of energy to that produced when the CO2 was created in the first place. One of the key presentations at the CCS TEM was about the manufacture of polycarbonates (and other chemicals) from CO2. This was an excellent piece of work, but the tricky subject of process energy doesn’t jump out of the presentation.

There is also another tricky subject that needs to be opened up; for the most part, the use of CO2 in chemical processes has no impact on the atmospheric CO2 balance, unless of course the chemical is eventually sequestered. Otherwise the CO2 simply returns to the atmosphere when the chemical is used or the plastic degrades. Even if sequestration is the end point, chemical processes will never operate on the scale necessary to manage global CO2 emissions from energy use.

I did a bit more searching on these subjects and found an excellent paper at the University of Bath online publication store (originating from Imperial college), but beware it is long, detailed and very technical. However, an extract from the early part of the paper highlights the above points:

The development of methods to activate and use CO2 to prepare chemicals and materials is an attractive research goal. Carbon dioxide is abundant, renewable, of low toxicity and is emitted as a waste product from a myriad of industrial processes. A longstanding goal of synthetic chemistry has been to develop catalysts and processes which consume it, however, such reactions pose significant challenges. As the most highly oxidized state of carbon, CO2 is the lowest energy state of all carbon-containing binary neutral species: indeed, CO2 and water are the end-products of most energy releasing processes, including combustion and metabolic pathways. The table below illustrates the free energy of formation of carbon based molecules: the large energy required to reduce it is the most significant obstacle. This energy can either be directly input as physical energy or indirectly via the use of reactive chemical species as reagents; it is the latter strategy which powers the copolymerisation of epoxides and CO2. Free energy of Formation

Nature is successful in transforming approximately 200 billion tonnes/year of CO2 into carbohydrates via photosynthesis. Synthetic chemistry has been less successful, so far there are only a limited range of reactions which can transform CO2 to useful products, those that yield materials with high market volumes and/or economics are even scarcer. Successful reactions include the synthesis of urea (146 Mt/y, 2008), inorganic carbonates (45 Mt/y, 2008, mostly Na2CO3 via the Solvay process), methanol (6 Mt/y), salicylic acid (60 kt/y, 2003, via the Kolbe-Schmitt process), organic carbonates (100 kt/y, 2009; the subject of recent reviews) and polycarbonates (a few kt/y). Current production volumes for aliphatic polycarbonates produced from CO2 are small, however, the polycarbonates sector as a whole is large and growing. In Asia alone the sector is forecast to grow by 8-10%, resulting in the construction of new polycarbonate plants and opportunities for new technologies. Finally, it is important to note that CO2 consumption by chemical processes (approx. worldwide ~ 100 Mt/y) cannot impact global CO2 levels, nor are they a means to address climate change (UK CO2 emissions in 2008 from power stations exceeded 200 Mt/y). However, they could be a means to add value to a portion of the CO2 from carbon sequestration and storage (CSS) processes.

The last point is critical and it is why processes such as described above and the use of CO2 for enhanced oil recovery (EOR) are so important. All of these give real value to a modest amount of CO2. This is nowhere near the scale necessary to impact atmospheric concentrations, but enough to allow carbon dioxide capture plants to be built, which in turn allows capture technology to develop and become more cost competitive. This then makes CCS a more attractive option over the longer term and gives confidence that it is commercially viable at a certain carbon price.

The Australian Prime Minister, Tony Abbott, turned up in Queensland very recently to open a coal mine (the $US3.4 billion Caval Ridge Mine in Central Queensland, a joint venture between BHP and Mitsubishi which will produce 5.5 million tonnes annually of metallurgical coal and employ about 500 people). In a TV interview he managed to inflame a number of commentators around the world with his quote that “Coal is good for humanity, coal is good for prosperity, coal is an essential part of our economic future, here in Australia, and right around the world . . . . . “.

In this world in which it is difficult for politicians to say anything without getting criticised, he was perhaps in a losing situation before he spoke, simply because of the critical role that coal happens to play in the global economy cast against the reality that its cumulative carbon footprint is the single largest contributor over time to the build-up of CO2 in the atmosphere. More recently, increased coal use has also contributed most to the rapid rise in global emissions.

In one sense Abbott is correct in that over and over again coal has been the starting point for industrial development. I explored this in more depth a few months ago. Coal is an inexpensive fuel, but perhaps most importantly it requires only minimal technology to utilize. There is no need for pipelines, leakage monitoring or sophisticated storage facilities. One could argue that the most important piece of technology is a shovel. This was true in Victorian England, it is still true in parts of China today and it may well be the case as Africa begins to industrialize on a large scale. Of course, the development of Africa on the back of the vast coal resource that sits in that continent (200 billion tonnes in Botswana alone) will send emissions to levels that are hard to contemplate and even more difficult to reduce. That is highly unlikely to be good for humanity.

Contrast this with the latest offering from activist and author Naomi Klein, who has recently published a book on the climate issue; This Changes Everything. I am about a quarter of the way into this and try as I may to be objective, I am already wondering if I will ever finish it. I feel that I have already been vilified a hundred times over, not just as part of the fossil fuel industry that she likens to an evil empire, but also as a shareholder daring to expect a return on my investments (“. . . . pour their profits into shareholder pockets . . .” ). Ms. Klein seems to believe that nothing short of a return to collective ownership, community living, local production and simple lifestyles will be sufficient to reduce carbon dioxide emissions. She blames anybody and everybody for the problem of rising emissions and lands the issue squarely at the feet of the economic system that has served us pretty well for centuries. Apart from her argument for the need to change everything, it looks as if I will have to plough through another 300 pages to find out how she imagines this might actually happen. My guess is that it could be more wishful thinking than practical policy advice. Should I ever get to page 533 (!!) I will let you know, but I don’t know if I have a thick enough skin for that.

One reviewer did manage to make it to the end and his views can be found here.

In the midst of this cacophony of criticism, the rational middle continues on without much of a voice. But some of us are at least trying. My new book, Putting the Genie Back: 2°C will be harder than we think, hasn’t attracted the talk shows or celebrity endorsements yet, but I have at least had some good feedback from readers and that is very gratifying. I wrote it to try and present a more balanced view of the climate issue and it does seem to be succeeding in that regard.