Archive for the ‘Carbon capture & storage’ Category

The Carbon Sequestration Leadership Forum (CSLF) held its 6th Ministerial Meeting in Riyadh, Saudi Arabia recently. The conference offered considerable opportunity for governments and companies to showcase their achievements in carbon capture and storage (CCS) and to highlight areas in which research and development was proceeding.

Given the location, Saudi Aramco was there in force and they also offered the opportunity for a number of participants to visit their headquarters in Dhahran and get an even deeper look at how the company was looking at the CO2 issue and the use of CCS. As there isn’t a carbon pricing system operating in Saudi Arabia, the company is heavily focussed on using CO2 for Enhanced Oil Recovery (EOR), but this is at least driving research and development on CO2 separation, purification and transport with a view to further lowering the cost and improving the efficiency of these key steps in the CCS value chain.

To this end, Saudi Aramco is doing some intriguing work on small scale carbon capture, which was demonstrated in both Riyadh and Dhahran by their display featuring a saloon car with on-board carbon capture. The vehicle captures about thirty percent of the carbon dioxide in the exhaust, using a solvent process. The CO2 is then recovered from the solvent, compressed and stored as a supercritical liquid in a small cylinder, all within the vehicle itself. The carbon dioxide can then be discharged when the car is filled with fuel as part of the normal service offered at a (future) gasoline station. The fuel supplier would then handle long term geological storage of the carbon dioxide or may have outlets where it can be profitably used (e.g. as a feedstock for manufacture of more fuel, but with the caveat that a considerable amount of energy will be required for such a step).

CCS Car (small)

The vehicle is a 2nd generation prototype, with the carbon capture equipment occupying about half the boot space. But this is a huge step forward compared to their first generation attempt where the equipment sat on a trailer pulled by the car. Further enhancements are planned. The current system is an active one, in that it draws energy from the vehicle to operate the equipment, resulting in an efficiency penalty of about 5-10% for the vehicle as a whole. Future thinking includes a more passive system, which could see carbon dioxide absorbed into a chemical matrix such as in a regular catalytic convertor. However, some energy input would presumably be required at some point to release this for subsequent use or storage.

Whether this ends up as a viable domestic vehicle solution is not entirely the point at this stage. One aspiration that the demonstration alluded to was its use in Heavy Goods Vehicles (HGV) which travel long distances with large loads and where battery technology may not be feasible. Other applications could be imagined, such as on board ships. More importantly, the underlying development of smaller and cheaper carbon capture technology offers real hope for long term management of emissions. It was also clear that this work and the other efforts being made by Saudi Aramco on CCS and EOR have very high level support in the country; the Saudi Minister of Petroleum and Mineral Resources, Ali Al-Naimi, spent two full days both at the conference and escorting the smaller group to Dhahran.


One million tonnes of CO2

The first week of November sees Shell officially open its first major carbon capture and storage (CCS) facility, the Quest project. It is in Alberta, Canada and will capture and store about one million tonnes of carbon dioxide per annum. Construction commenced back in September 2012 when the Final Investment Decision (FID) was taken and the plant started up and began operating for the first time in September of this year, just three years later. It is one of only a handful of fully integrated carbon capture and storage facilities operating globally. There are now many facilities that capture CO2 but mainly linked to Enhanced Oil Recovery which provides an income source for these projects.  Quest has dedicated CO2 storage, developed in an area some 65 kms from the capture site at a depth of about 2 kms.

Quest Construction

The Quest income source is not based on EOR; it has been able to take advantage of the government implemented carbon price that prevails within Alberta. Although the current carbon pricing mechanism has an effective ceiling of $15 per tonne CO2 which isn’t sufficient for CCS, let alone a first of its kind, it nevertheless provides a valuable incentive income to operate the facility which has been built on the back of two substantial capital grants from the Provincial and Federal governments respectively. A supplementary mechanism also in place in Alberta provide credits related to the carbon price mechanism for the early years of a CCS project, providing additional operating revenue for any new facility.

Canada, as it turns out, has become a global leader in CCS. The Quest facility is the second major project to be started up in Canada is as many years, with the Saskpower Boundary Dam project commencing operations this time last year.

As noted, Quest will capture and store approximately one million tonnes of carbon dioxide per annum. It demonstrates how quickly and efficiently large scale CO2 management can be implemented once the fiscal conditions are in place. Quest, which is relatively small in scale for an industry that is used to managing gas processing and transport in the hundreds of millions to billions of tonnes globally, demonstrates both the need for continued expansion of the CCS industry and the importance of carbon pricing policy to drive it forward. This single facility far surpasses the largest solar PV facilities operating around the world in terms of CO2 management. Take for example the Desert Sunlight Solar Farm in California, currently the fourth largest solar PV power station in the world. According to First Solar, it displaces 300,000 tonnes of CO2 annually, less than a third of that captured and permanently stored by Quest.

A key difference though is the use of the word displace. Alternative energy projects don’t directly manage CO2, they generate energy without CO2 emissions. But, as I have noted in previous postings and in my first book, the release of fossil carbon to the atmosphere is more a function of energy prices and resource availability. This means that even when a project like Desert Sunlight operates, the CO2 it notionally displaces may still be released at some other location or at some other time, depending on long term energy prices and extraction economics. There is no doubt that the CO2 is not being emitted right now in California, but that doesn’t necessarily resolve the problem. Quest, by contrast, directly manages the CO2 from fossil fuel extraction.

The requirement to provide alternative energy (i.e. without CO2 emissions) needs to grow, but we shouldn’t imagine that such action, by itself, will fully resolve the climate issue. That will come through the application of carbon pricing mechanisms by governments, driving the further expansion of both the alternative energy and CCS industries as a result.

A video about the Quest project, made by the constructors, Fluor, is available here.

FASTER carbon pricing mechanisms

  • Comments Off on FASTER carbon pricing mechanisms

Last week New York hosted amongst other events, the Papal visit, the UN General Assembly where some 150 world leaders gathered and Climate Week. Arguably this had the makings of a bigger coming together than COP21 itself, although many other issues were also on the agenda, such as the UN Sustainable Development Goals. Nevertheless, the climate issue progressed and the subject of carbon pricing was widely discussed, both how it might be implemented by governments and how companies could use carbon valuation internally in relation to project implementation and risk management.

A highpoint of the Climate Week events was the release by the World Bank of its FASTER principles on implementation of carbon pricing mechanisms . This is work to support the overall push by that organisation for greater uptake of explicit carbon pricing mechanisms at national level as governments consider how they might implement their INDCs.

FASTER is an acronym, with each of the terms further elaborated in a fairly readable 50 page accompanying document. The short version is as follows;

  • F – Fairness
  • A – Alignment of Policies
  • S – Stability and Predictability
  • T – Transparency
  • E – Efficiency and Cost-Effectiveness
  • R – Reliability and Environmental Integrity

I have a slight feeling that the acronym was thought up before the words, but each of the subject areas covered is relevant to the design of a carbon pricing mechanism by governments, such as a cap-and-trade system.

Importantly, the principles recognise many of the key issues that early cap-and-trade and taxation systems have confronted, such as dealing with competitiveness concerns, managing competing policies and complementing the mechanism with sufficient technology push in key areas such as carbon capture and storage and renewables. The latter requires something of a Goldilocks approach in that too little can result in wasted resource allocation, but too much while also being wasteful can end up becoming a competing deployment policy.

In the various workshops held during Climate Week, one aspect of the FASTER principles that did draw comment was the call for a “predictable and rising carbon price”. Predictability should be more about the willingness of government to maintain the mechanism over the long term, rather than a clear sign as to what exactly that price might be. For the most part, commodity markets exist, trade and attract investment on the basis that they are there and that the commodity itself will continue to attract demand for decades to come. We are still some way from a reasonable level of certainty that carbon pricing policies will be in place over many decades, given that they do not enjoy cross-party support in all jurisdictions.

Particularly for the case of a cap-and-trade system, a rising carbon price cannot be guaranteed. Rather, the system requires long term certainty in the level of the cap, after which the market will determine the appropriate price at any given point in time. This might rise as the EU ETS saw in its early days, but equally the widespread deployment of alternative energy sources or carbon capture and storage could see such a system plateau at some price for a very long time. Even within this, capital cycles could lead to the same price volatility as is seen in most commodity markets.

The guarantee of a rising price may not be the case for a tax based system either. Should emissions fall faster than the government anticipates, there could be popular pressure for an easing of the tax. As carbon tax becomes mainstream, we shouldn’t imagine it would be treated any differently to regular income based or sales tax levels, both of which can fluctuate.

The release of the FASTER Principles coincides with my own book on carbon pricing mechanisms, which was launched just prior to Climate Week. I cover many of the same topics, but drawing more on the events that have transpired over the last decade. Both these publications will hopefully be of interest to individuals and businesses in China, the government of which formally announced the implementation of a cap-and-trade system from 2017. This will be an interesting implementation to watch, in that it may well be the first such system that operates on a rising cap, at least for the first few years. Irrespective, the announcement ensured that Climate Week ended on a high note.

Will the Clean Power Plan deliver effective emission reductions?

  • Comments Off on Will the Clean Power Plan deliver effective emission reductions?

August 3rd saw the Obama Administration release its long awaited Clean Power Plan. The plan partly underpins the current US COP21 INDC (Intended Nationally Determined Contribution) to reduce emissions by 26-28% by 2025 compared to 2005. It also indicates that by 2030 the power sector emissions in the USA will be 32% lower than 2005 levels, which presumably is the beginning of the next phase of their national contribution. However, this plan if for electricity only, consumption of which represents a bit less than a quarter of final energy use in the USA.

Much of the media attention was on the proposal for existing power plants, but the rule comes in two parts; one for existing sources and a second one for new sources. For existing facilities the emphasis is on the near term (i.e. through to 2030), with the rule focussed more on portfolio transition than radical adjustment. As has been seen in recent years, the US is already on a journey of portfolio change, with significant retirement of older coal fired power stations underway and much greater utilization of surplus natural gas power generation capacity. This has been largely driven by the development of shale gas, which came at an opportune time given the age of the coal fired fleet. Back in 2010 I posted the two charts below, which contrast the ageing coal fleet (median build year around 1970-1975) with the relatively new natural gas infrastructure (median build year around 2000). The whole process has quickly and efficiently reduced emissions across the United States – a phenomena also seen in the UK in the 1990s as North Sea natural gas overwhelmed the older coal based infrastructure.

US Coal Fleet

US coal generation capacity

US Natural Gas Fleet

US natural gas generation capacity

The US journey of substitution continues today, but augmented by considerable solar and wind capacity. The new rule for existing plants encourages that transition to continue, focussing on energy efficiency in coal fired power plants (Building Block 1), continued substitution of coal by natural gas (Building Block 2) and a further push on renewables (Building Block 3). But the rule puts significant near term emphasis on renewable energy development rather than further encouraging the further uptake of natural gas. In fact, through the use of a crediting mechanism (Emission Rate Credits) within the EPA rule, the efficient displacement of coal by natural gas is curtailed, possibly even leading to a similar outcome as experienced over recent years in the EU, a higher overall energy cost and some coal growth. This happened in the EU because of near term renewable energy policies bringing more distant and costly projects forward, which in turn supressed the carbon price and the otherwise successful switching away from coal to natural gas that the carbon price was driving at the time.

In any plan to manage power sector emissions, carbon capture and storage (CCS) is almost certainly a long term requirement, so it should be encouraged from the outset. In the case of the existing source rule, there is no particular steer towards CCS. Although CCS is mentioned about sixty times in the 1,500 page document, there is a significant caveat; cost. While the rule makes several references to the cost of CCS, this is much more in the context of retrofit of facilities that have limited remaining shelf life. Although CCS is critically important over the longer term, it doesn’t make much economic sense to retrofit old facilities with the technology and as can be seen above, the new build coal fleet is relatively small.

But CCS does come into the picture when looking at the construction of new coal fired power plants. These will operate for up to fifty years, well into the period when the USA may want to reduce national emissions to very low levels, yet still make use of the vast fossil fuel resources that is has at its disposal. The EPA rule finds that the best system for emission reduction (BSER) for new steam units is highly efficient supercritical pulverized coal (SCPC) technology with partial carbon capture and storage (CCS). In such cases, the final standard is an emission limit of 1,400 lb CO2/MWh‐gross, which is the performance achievable by an SCPC unit capturing about 20 percent of its carbon pollution. This offers some opportunity for CCS to develop in the near term, depending of course on the rate at which older coal fired power stations are displaced and new ones are proposed. That in turn may be hampered by the Emission Rate Credit mechanism. A flaw in the thinking on ERCs (and also for much of the push towards renewable energy as a means of dealing with atmospheric CO2) is the assumption that a tonne of CO2 not emitted now by generating electricity from renewable energy or improving efficiency equates to a lower eventual concentration of CO2 in the atmosphere.  This may not be the case, a point I discuss at some length in my e-book, Putting the Genie Back. Given that both geographical (used elsewhere) and temporal (used later) displacement of fossil fuel is a reality, the actual offset of CO2 by using renewable energy is dependent on the future energy scenario. By contrast, a tonne of CO2 stored is over and done with. Renewable energy should certainly be encouraged, but not at the cost of pushing CCS out of the picture.

The USA is now heading towards an electricity mix that consists of efficient natural gas generation, some legacy coal, renewables, some nuclear and possibly coal with CCS. It has taken a long time to get to this position and doubtless there will be challenges ahead, but the direction appears to be set. However, I will always argue that a well implemented emissions trading system could have achieved all this more efficiently, at lower cost and therefore with less pain, but at least for now that is not to be (or is it – there are a legion of trading provisions within the rule).

Four demands for Paris

The call was very clear, here were “four demands” for Paris COP21 being presented to a group in London. But the surprise was the presenter; not a climate focussed NGO or an activist campaigning for change, but Fatih Birol, Chief Economist for the International Energy Agency. He was in an optimistic mood, despite the previous two weeks of ADP negotiations in Bonn that saw almost nothing happen. He opened the presentation by saying “This time it will work” (i.e. Paris, vs. Copenhagen and all the other false starts).

On June 15th Mr Birol launched the World Energy Outlook Special Report: Energy and Climate Change. The IEA usually launch a special supplement to their annual World Energy Outlook (WEO) and this one was the second to focus on the climate challenge and the policy changes required for the world to be on a 2°C emissions pathway. It was also something of a shot over the bow for the Paris COP21 process which had just completed another two weeks of negotiations in Bonn, but with little to show for the effort. Mr Birol is a master of such presentations and this one was memorable. He focussed almost entirely on the short term, although the publication itself looks forward to 2030 for the most part. With regards to the energy system, short term usually means 5 years or so, but in this case short term really meant December but with the resulting actions being very relevant for the period 2016-2020.

Mr Birol outlined four key pillars (as they are referred to in the publication) for COP21, but restated them as “demands”. They are;

  1. Emissions must peak by 2020. The IEA believes that this can be achieved with a near term focus on five measures;
    1. Energy Efficiency.
    2. High efficiency coal, both in new building and removing some existing facilities. IEA proposed a ban on building sub-critical coal.
    3. An even bigger push on renewable energy, with an increase in investment from $270 billion in 2014 to $400 billion in 2030.
    4. Oil and gas industry to reduce upstream methane emissions.
    5. Phasing out fossil-fuel subsidies to end-users by 2030.
  2. Implement a five year review process for NDCs (Nationally Determined Contributions) so that they can be rapidly adjusted to changing circumstances. I discussed the risk of a slow review process when MIT released a report on the possible COP21 outcome.
  3. Turn the global 2°C goal into clear emission reduction targets, both longer term and consistent shorter term goals.
  4. Track the transition – i.e. track the delivery of NDCs and transparently show how the global emissions pathway is developing as a result.

Interestingly Mr. Birol didn’t mention carbon pricing once, at least not until a question came up asking why he hadn’t mentioned carbon pricing – “Is carbon pricing no longer an important goal, you didn’t mention it?” asked a curious member of those assembled at the Foreign Office. He said yes it was, but given his focus was on Paris and that he saw little chance of a global approach on carbon pricing being agreed in that time-span, he didn’t mention it! I think this represents a major oversight on the part of the IEA although there is at least some discussion on carbon pricing in the publication. While it is true that a globally harmonised approach to carbon pricing won’t be in place in the near term, I would argue that an essential 5th pillar (or 5th demand) for Paris is recognition of the importance of carbon pricing and creation of the necessary space for linking of heterogeneous systems to take place. This looks like the fastest route towards a globally relevant price.

Mr. Birol didn’t mention CCS either, which is perhaps more understandable given the 5 year focus of much of the publication. However, Chapter 4 within the publication deals extensively with CCS and the IEA highlights the importance of CCS in their 450 ppm scenario through the chart below.


Finally, there was some discussion around the climate statement made by the G7 the week before and their commitment out to 2100. Looking at the statement released by the G7, they said;

“. . . . .we emphasize that deep cuts in global greenhouse gas emissions are required with a decarbonisation of the global economy over the course of this century. Accordingly, as a common vision for a global goal of greenhouse gas emissions reductions we support sharing with all parties to the UNFCCC the upper end of the latest IPCC recommendation of 40 to 70 % reductions by 2050 compared to 2010 recognizing that this challenge can only be met by a global response.”

My reading of this is that the G7 are recognizing the need to be at or nearing global net zero emissions by 2100. However, this isn’t how the statement has been reported, with several commentators, media outlets and even one of the presenters alongside Fatih Birol interpreting this as an agreement to be fossil fuel free by 2100. These are two very different outcomes for the energy system; the first one potentially feasible and the second being rather unlikely. Both the Shell Oceans and Mountains New Lens Scenarios illustrate how a net zero emissions world can potentially evolve, with extensive use of CCS making room for continued use of fossil fuels in various applications. The core driver here will be the economics of the energy system and the competitiveness of fossil fuels and alternatives across the full spectrum of needs. It is already clear that alternative energy sources such as solar PV will be very competitive and could well account for a significant proportion of global electricity provision. Equally, there are areas where fossil fuels will be very difficult to displace; I gave one such example in a case study I posted recently on aviation. Energy demand in certain sectors may well be met by fossil fuels for all of this century, either with direct use of CCS to deal with the emissions or, as illustrated in the IPCC 5th Assessment Report, offset by bio-energy and CCS (BECCS) elsewhere. Unfortunately the nuances of this issue didn’t make it into the IEA presentation.

That’s it from me for a couple of weeks or so. I am heading north on the National Geographic Explorer to see the Arctic wilderness of Svalbard and Greenland.

The past few weeks, highlighted by the Business & Climate Summit in Paris and Carbon Expo in Barcelona, has seen many CEOs, senior political figures and institutional leaders call for increased use of carbon pricing. This is certainly the right thing to be saying, but it begs the question, “What next?”. Many countries are already considering or in the process of implementing a carbon pricing system, but still the call rings out. While uptake of carbon pricing at national level certainly needs to accelerate, one critical piece that is missing is some form of global commonality of approach, at least to the extent that prices begin to converge along national lines.

On Monday June 1st six oil and gas companies come together and effectively called for such a step in a letter from their CEOs to Christiana Figueres, Executive Secretary of the UNFCCC and Laurent Fabius, Foreign Minister of France and President of COP 21. Rather than simply echo the call for carbon pricing, the CEOs went a step further and specifically asked;

Therefore, we call on governments, including at the UNFCCC negotiations in Paris and beyond – to:

  • introduce carbon pricing systems where they do not yet exist at the national or regional levels
  • create an international framework that could eventually connect national systems.

To support progress towards these outcomes, our companies would like to open direct dialogue with the UN and willing governments.

The request is very clear – this isn’t just a call for more, but a call to sit down and work on implementation. The CEOs noted that their companies were already members of, amongst other bodies, the International Emissions Trading Association (IETA). IETA has been working on connection of (linking) national systems for well over a year (although the history of this effort dates back to the days of the UNFCCC Long Term Cooperative Action – LCA – workstream under the Bali Roadmap) and I am co-chair, along with Jonathan Grant of PWC, of the team that is leading this effort.

Late last year IETA published a strawman proposal for the Paris COP, suggesting some text to set in place a longer term initiative to develop an international linking arrangement. I spoke about this at length to RTCC at Carbon Expo in Barcelona.

DCH Interview

The strawman is what it implies, an idea. It could be built on to develop a placemarker in the Paris agreement to ensure that the framework mentioned by the six CEOs actually gets implemented in the follow-up from Paris – as the CDM was implemented in the follow-up from Kyoto.

From my perspective, this week wasn’t just about carbon pricing, but also about climate science. On the same day that the FT published its story on the letter from the oil and gas industry CEOs, The Guardian chose to run a front page story implying that I had tried to detrimentally influence (apparently being a former oil trader!!) the content of the London Science Museum’s Atmosphere Gallery, a display on climate science that Shell agreed to sponsor some years ago. The reporter had based his story on exchanges between Shell and the Science Museum staff when the gallery was looking to do a recent refresh.

I did engage in such a discussion and I did make some suggestions as to content which I thought was new and interesting since the Atmosphere Gallery was first established. Unfortunately The Guardian wasn’t able to publish my proposals as they were put forward during a meeting between me and two staff members from The Science Museum, so to complete the story I will publish them here. Although this particular piece of science dates back to a 2009 Nature article by Oxford University’s Professor Myles Allen and his team, it didn’t feature in the Gallery when it was first put together (the Advisory Panel met during 2009 as part of the design phase of the Gallery). But today, it is the foundation work behind the concept of a global carbon budget which has become a mainstream topic of discussion. My angle on this was to illustrate the importance of carbon capture and storage in the context of this science, but with an emphasis on the science itself. My discussion with The Science Museum staff members took place on 23rd June 2014 and I asked them to consider the following for the refresh of the gallery:

1. As background, three papers that have come from Oxford University:

  • Warming caused by cumulative carbon emissions towards the trillionth tonne

Myles R. Allen, David J. Frame, Chris Huntingford, Chris D. Jones, Jason A. Lowe, Malte Meinshausen & Nicolai Meinshausen

  • Greenhouse-gas emission targets for limiting global warming to 2°C

Malte Meinshausen, Nicolai Meinshausen, William Hare, Sarah C. B. Raper, Katja Frieler, Reto Knutti, David J. Frame & Myles R. Allen

  • The case for mandatory sequestration

Myles R. Allen, David J. Frame and Charles F. Mason

2. Consider using (or adapting) a trillion tonne video made by Shell where Myles Allen talks about CCS in the context of the cumulative emissions issue:

3. Consider putting the Oxford University fossil carbon emissions counter in the Atmosphere Gallery as this would help people understand the vast scale of the current energy system and the rate at which we are collectively approaching the 2°C threshold;

Trillionth Tonne

4. Reference the Trillion Tonne Communique from Cambridge:

5. Offer the use of the Shell “CCS Lift” (an audio-visual CCS experience) to help explain this technology to the gallery visitors.

My pitch to The Science Museum was that this approach offered a real opportunity to feature the Science Museum and the Atmosphere Gallery in the very public discussion on carbon budgets, get some good media attention in the run-up to Paris 2015 (e.g. through the very visible counter), tell the CCS story in context (the Myles Allen video and the CCS audio-visual display) and raise awareness of the cumulative nature of the problem (i.e. the science). In the end they decided not to use this material, but I stand by the proposal.

A new report from the IMF

Last week many representatives of the global business community gathered at UNESCO Headquarters in Paris for the Business and Climate Summit, a prequel of sorts to the main COP21 event in December, but with only the business community involved. The goal was to demonstrate the involvement of the business community in the climate change issue and to set the stage for the business response to whatever is agreed by the Parties to the UNFCCC in December.

The event had significant political backing, with President Hollande speaking at the opening session. His speech went straight to the heart of the issue, with very matter of fact references to the important role of carbon pricing and the need for carbon capture and storage. Even UNFCCC Executive Secretary, Christiana Figures, endorsed CCS, not something she is known to do very often. The remarks by the President were backed up by many speakers, but Angel Gurria, Secretary General, OECD was perhaps the most memorable with his call for “a price, a price, a big fat price on carbon.”

The opening on May 20th set the scene for a major session on carbon pricing the next morning, with the World Bank and various business leaders taking the podium. While these speakers were all in agreement on the importance of carbon pricing, the harmony of the day before wasn’t quite as strong, with something of an argument between Tony Hayward, Chairman of Glencore and Kerry Adler, CEO of Skypower (solar) over the respective role of solar and coal in the coming decades. Mr Hayward saw little possibility of solar filling the breadth of industrial needs currently fulfilled by coal (and other fossil fuels).

The economic purpose of a cost on carbon dioxide emissions (carbon price) is as a response to the externality presented by our collective use of fossil fuels. This externality (the impact related to rising levels of carbon dioxide in the atmosphere) was discussed on several occasions during the Summit with regular reference to a new IMF report which argues that fossil fuel subsidies now stand at $5.3 trillion per annum. The vast majority of this arises from unaccounted externalities, such as the emissions of carbon dioxide and the impact of black carbon. Given that global fossil fuel production is some 10+ billion tonnes of oil equivalent per annum, then $5 trillion of externality equates to a charge for each tonne of production of some $500. The IMF report says that about a quarter of this relates to carbon dioxide emissions.

The publication of this number caused some excitement at the Summit and of course it got picked up in the media very quickly, in many cases with very little explanation as to its meaning. The IMF paper dwells at length on the need to cost in the externality and argues that despite a huge rise in energy costs that would result from such a charge, there would be a net welfare benefit to society at large. The report discusses the work of 19th Century Economist Arthur Pigou, who introduced the concept of externalities and proposed that negative externalities could be corrected by the imposition of a tax, now known as Pigouvian taxation. In the case of the climate issue, a carbon tax or the need to purchase emission allowances from the government are examples of Pigouvian taxes. The IMF report notes;

When the consumption of a good by a firm or household generates an external cost to society, then efficient pricing requires that consumers face a price that reflects this cost. In the absence of a well-functioning market for internalizing this cost in the consumer price, efficiency requires the imposition of a Pigouvian tax equal to the external cost generated by additional consumption.

. . . . . . 

. . . . . .

Eliminating post-tax subsidies in 2015 could raise government revenue by $2.9 trillion (3.6 percent of global GDP), cut global CO2 emissions by more than 20 percent, and cut pre-mature air pollution deaths by more than half. After allowing for the higher energy costs faced by consumers, this action would raise global economic welfare by $1.8 trillion (2.2 percent of global GDP).

But it is also important to consider the current value that is delivered by the availability of energy, a point also made by Tony Hayward on the carbon pricing panel. From an economic standpoint, it is worth taking this a step further. After all, why would the world be producing and using a fuel that brings such apparent economic hardship to society (i.e $5 trillion per annum worth of hardship)? The answer to this question implies that a positive externality must be outweighing this factor.

Although the IMF report doesn’t mention it, Pigou didn’t just talk about externalities in the negative sense, but also in the positive sense. Someone creating a positive externality—say, by educating himself and making himself more interesting or useful to other people—might not invest enough in education because he would not perceive the value to himself as being as great as the value to society. Pigou even advocated for subsidies for activities that created such positive externalities.

Despite the issues associated with using them, fossil fuels have brought tremendous value to society and continue to do so. Almost everything we take for granted in modern society from the food we eat to the iPhone we constantly use are here because of fossil fuels. This wealth creation that is tied to their use but not reflected in the price is a positive externality. Such a positive externality should be apparent in the price of fossil fuels, but because of their relative abundance around the world and the dislocation that often exists between extraction and use, this may not be the case. The positive externality is potentially so large that it is likely the root cause of some governments offering real incentives and (Pigouvian) subsidies to promote additional fossil fuel production. The IMF report calls these Producer Subsidies, but notes that they are relatively small.

None of the above is meant as an argument for not dealing with the environmental externalities associated with fossil fuels use. As noted many times during the Summit and as I have discussed often in the past, a carbon price is essential. But as other forms of energy scale up to the level at which we use fossil fuels, new externalities will present themselves. There will of course be the ongoing positive externality associated with energy provision, but negative externalities will almost certainly make themselves known as new industries emerge and new materials are introduced into society for everyday use (e.g. very large scale use of lithium). Perhaps the lesson from the IMF report is to start dealing with externalities much earlier in the cycle of production, before they reach a level which challenges our economic system to correct.

The last days of March have seen the start of submissions of Intended Nationally Determined Contributions (INDCs) to the UNFCCC. The United States, Switzerland, European Union, Mexico and Russia have all met the requested deadline of the end of Q1 2015. As is expected and entirely in line with the UNFCC request, the INDCs focus on national emissions. After all, this is the way emissions management has always been handled and reported and there is no sign of anything changing in the future.

As was to be expected, the United States submitted an INDC that indicated a 26-28% reduction in national emissions by 2025 relative to a baseline of 2005. This is an ambitious pledge, and highlights the changes underway in the US economy as it shifts towards more gas, backs out domestic use of coal, improves efficiency and installs renewable generation capacity. So far the USA national inventory indicates that the 2020 target is being progressively delivered, although it will be interesting to see whether this trend changes as a result of the sharp reduction in oil prices and a couple of summer driving seasons on the back of that.

US 2020 and 2030 Reduction Target

My own analysis in 2011 (see below) was that the USA would come close to its 2020 goal, but may struggle to meet it. The different overall level of emissions in the charts is the result of including various sources (e.g. agriculture) and gases, or not.

US 2020 Goal with 2010 data

Direct emissions represent just one view of US emissions. Some would argue that the national inventory should also include embedded emissions within imported products, but this introduces considerable complexity into the estimation.

Another representation of US emissions which is perhaps more relevant to the climate issue is the actual extraction of fossil carbon from US territory. As the climate issue follows a stock model, the development of global fossil resources and subsequent use over the ensuing years is a measure that is closer to the reality of the problem. The larger the resource base that is developed globally, the higher the eventual concentration of carbon dioxide that the atmosphere is likely to reach. This is because the long-term accumulation will tend towards the full release of developed fossil fuel reserves simply because the infrastructure exists to extract them and as such they will more than likely get used somewhere or at some time. This isn’t universally true, as the closure of some uneconomic coal mines in the USA is showing; or are they simply being mothballed?

A look at US carbon commitment to the atmosphere from a production standpoint reveals a different emissions picture. Rather than seeing a drop in US emissions since 2005, the upward trend that has persisted for decades (albeit it a slower rate since the late 1960s) is continuing.

US emissions based on extraction

In the case of measured direct emissions, reduced coal use is driving down emissions. But for the extraction case, additional coal is now being exported and the modest drop in coal production is being more than countered by increasing oil and gas production. Total carbon extraction is rising.

While there is no likelihood that national emission inventories will start being assessed on such a basis, it does nevertheless throw a different light onto the picture. In a recent visit to Norway it was interesting to hear about national plans to head rapidly towards net-zero emissions, but for the country to maintain its status as an oil and gas exporter. This would be something of a contradiction if Norway was not such a strong advocate for the development of carbon capture and storage, a strategy which will hopefully encourage others to use this technology in the future.

Getting to net-zero emissions

It is looking increasingly likely, but not a given, that a reference to global net-zero emissions or even a specific goal to achieve net-zero emissions by a certain date (e.g. end of the century) will appear in the climate deal that is expected to emerge from the Paris COP at the end of this year. But like many such goals, it is both open to interpretation and raises questions as to how it might actually be achieved.

The background to this is that the issue itself implies that this outcome is necessary. The IPCC says in its 5th Assessment Report;

Cumulative emissions of CO2 largely determine global mean surface warming by the late 21st century and beyond. Limiting risks across RFCs (Reasons for Concern) would imply a limit for cumulative emissions of CO2. Such a limit would require that global net emissions of CO2 eventually decrease to zero and would constrain annual emissions over the next few decades (Figure SPM.10) (high confidence).

However, the term net-zero needs some sort of definition, although this is currently missing from the UNFCCC text. One online source offers the following;

Net phase out of GHG emissions means that anthropogenic emissions of greenhouse gases to the atmosphere decrease to a level equal to or smaller than anthropogenic removals of greenhouse gases from the atmosphere.

The above effectively means stabilization of the atmospheric concentration of CO2, which also aligns with the ultimate aim of the UNFCCC Convention (stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system). This could still leave room for some level of emissions in that climate models show atmospheric concentration of carbon dioxide will decline if anthropogenic emissions abruptly stopped. In a 450 – 500 ppm stabilization scenario emissions could remain in the range 7-10 billion tonnes CO2 per annum without driving the atmospheric concentration higher. This is far below current levels (35 billion tonnes per annum from the energy system alone), but it isn’t zero. It can be classified as net-zero though, in that the atmospheric concentration isn’t rising.

However, such an outcome, while stabilizing the atmospheric concentration may not be sufficient to prevent dangerous interference with the climate system. In that case an even lower level of emissions may be required, such that atmospheric concentrations do begin to fall and stabilize at a lower concentration.

Another definition of net-zero may simply apply to anthropogenic emissions directly, irrespective of what the concentration in the atmosphere might be doing. In this case, any remaining emissions from anthropogenic sources (and there will be some) would have to be offset with sequestration of carbon dioxide, either via CCS or a permanent forestry solution. In the CCS case, the carbon dioxide would need to come from a bio-source, such as the combustion of biomass in a power station. This is what the IPCC have termed BECCS.

A final step which goes beyond net-zero, is to have an anthropogenic net-negative emissions situation, which is drawing down on the level of carbon dioxide in the atmosphere through some anthropogenic process. This would be necessary to rapidly lower the concentration of carbon dioxide in the case of a significantly elevated level that comes about in the intervening years between now and the point at which the concentration stabilizes. Very large scale deployment of BECCS or an atmospheric capture solution with CCS would be required to achieve this.

Finally, there is the consideration that needs to be given to greenhouse gases other than carbon dioxide. Methane for example, while a potent greenhouse gas, is relatively short lived (a decade) in the atmosphere so will require some thought. Even in a zero energy emissions system, methane from agriculture and cattle will doubtless remain a problem.

Both of the Shell New Lens scenarios end in a  net zero emissions outcome by the end of the century, but this is within the energy system itself and does not encompass the full range of other sources of CO2 emissions and other long lived greenhouse gases. Nevertheless, with extensive deployment of CCS the Mountains scenario heads into negative emissions territory by 2100 and the Oceans scenario soon after that (which means there is potential to offset remaining emissions from very difficult to manage sources). Oceans relies on this approach in a major way to even approach zero in the first instance

Many look to renewable energy as a quick solution to the emissions issue, but the reality is far more complex. While we can imagine a power generation system that is at near zero emissions, made up of nuclear, renewables and fossil fuels with CCS, this is far from a complete solution. Electricity currently represents only 20% of the global final energy mix (see below, click for a larger image: Source IEA).

Global final energy 2012

Solutions will need to be found for a broad range of goods and services that give rise to greenhouse gas emissions, including non-energy sources such as limestone calcination for cement and cattle rearing for dairy and direct consumption. While we can also imagine a significant amount of global light transport migrating to electricity, shipping, heavy transport and aviation will not be so simple. Aviation in particular has no immediate solution other than through a biofuel route although there is some experimentation underway using high intensity solar to provide the energy for synthesis gas manufacture (from carbon dioxide and water), which is then converted to jet fuel via the well-established Fischer–Tropsch process. There are also dozens of industrial processes that rely on furnaces and high temperatures, typically powered by fuels such as natural gas. Metal smelting currently uses coal as the reducing agent, so a carbon based fuel is intrinsic to the process. Solutions will be required for all of these.

Whether we aim for a very low level of emissions, true net-zero anthropogenic emissions or negative emissions is somewhat academic today, given the current level of emissions. All the aforementioned outcomes are going to require a radical re-engineering of the energy system in a relatively short amount of time (< 80 years).

Fifty shades of grey?

  • Comments Off on Fifty shades of grey?

The tension was building throughout the week, but finally just before Valentine’s Day weekend the negotiators in Geneva completed the first draft of a Paris negotiating text and released it at the end of the eighth part of the second session of the Ad Hoc Working Group on the Durban Platform for Enhanced Action (ADP). Contained within this 86 page document, replete with perhaps 400 or so carefully worded options to select from and 1,234 square brackets, is supposedly the necessary political recipe for addressing the climate issue over the coming decades. Or were we presented with the greyness of diplomacy and compromise, which may be the best that can be managed for now, but doesn’t incorporate the necessary toolkit to drive down emissions in the decades to come?

The text certainly contains sufficient versions of one important overarching requirement; that being the need to reach net zero emissions at some point in the future. In the context of the level of greenhouse gas emissions, the word zero appears in the text seven times, from a non-specific reference of “net zero greenhouse gas emissions in line with the ultimate objective of the Convention“, to the highly ambitious proposal for “zero emissions of CO2 and other long-lived greenhouse gases in the period 2060–2080“. I discussed this at some length in my previous post, with the conclusion that an end of the century net zero emissions objective is perhaps achievable, but much earlier than this looks unlikely. Even a timeframe of 85 years will require enormous effort, including extensive use of carbon pricing and the widespread deployment of carbon capture and storage (CCS). This view received quite a number of comments on The Energy Collective. My post wasn’t to argue that nothing would happen or that no progress could be made, but to point out the difficulty of rapidly slowing down and turning a system that has such enormous momentum. All of the suggested technologies that filled the comments section will almost certainly play a role, but the challenge is the time it takes to do all this. My own experience in the energy industry tells me the timeframe is decades, not years. In my view, the text now taking us forward to Paris doesn’t present the necessary conditions for a strong response, but it is only part of the story and much more will be revealed over the coming weeks and months as the INDCs (Intended Nationally Determined Contributions) are also published. This text seems to be more about achieving some diplomatic harmony around the climate issue and at least trying to get everyone marching to the same tune.

But returning to the text itself, the other area that needs considerable support and diplomatic effort is seeing a carbon price emerge within the global energy system. The phrase “carbon pricing” gets two mentions in the 86 pages of text, but there are many options presented on the “use of markets”. To some extent, “markets” is UNFCCC code for a carbon price, but not in all cases. It can also mean the further development of market mechanisms (such as the CDM) and the ability for developing countries to sell credits from these mechanisms to developed countries as a means of securing clean energy investment. While many variations around this theme are presented, there is no proposed language in the current text that really sets out to establish a full global carbon pricing regime – although Option 4 on page 17 perhaps comes closest by trying to resurrect something that operates along the lines of the Kyoto Protocol. A global carbon market seems to be a step too far for most countries at the moment, even though it is an essential part of the solution set. Rather, a proxy based approach is being proposed through multilateral institutions such as the World Bank, which hopes to see a global market develop over time through the linkage of various national and sub-national emissions management approaches and the interchange of the domestic units, quotas and allowances on which they are based. In the World Bank model, this would be governed by an exchange rate mechanism. This week also saw the UK House of Commons Energy & Climate Change Committee launch a report on the linking of emissions trading systems. The report concluded that;

Any agreement reached at the UNFCCC COP 21 in Paris at the end of 2015 should promote the use of carbon markets and facilitate the future linking of emissions trading systems.

One final reality check on the paris text is that nowhere in the 86 pages is CCS mentioned. While the UNFCCC is always very careful about featuring a specific technology and understandably so, the clear advice from the IPCC 5th Assessment Report was that 2°C cannot be reached without it, at least not within reasonable cost bounds. The IPCC does get mentioned 23 times.

In contrast with the events in Geneva, BP published their Energy Outlook 2035 which showed both overall energy demand and demand for fossil fuels rising in the outlook period (see chart; source: BP). The corresponding rise in energy system emissions is also given, reaching some 40 billion tonnes per annum by 2035. This is in contrast to the IEA 450 Scenario which argues for a fall in emissions to nearly 20 billion tonnes by 2035. However, the outlook does include a rising carbon price through to 2035, when it reaches some $40 per tonne CO2. Judging from the data presented, the main impact of this seems to be to bring coal growth to a near halt, but that’s all. The BP analysis presents a very different outlook to the one we need to stay within the 2°C threshold agreed by governments at the Cancun COP back in 2010. It also argues for a clear and robust outcome from Paris, although the current text doesn’t point in that direction.

BP Demand to 2035

BP Emissions to 2035